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p. 13. In Table 1.2, in Eqn. T2-10: the second sign minus has been replaced by ±. 

p. 22. In the third sentence of the last paragraph, “the predicted values of cvD and Dm were higer than…”, higer was 
replaced by “higher”. 

p. 46. In the line after Eqn. 6, “decreasing” has been replaced by “increasing”. 

p. 53 - 54. In Eqns . 3 and 4, the sign minus has been deleted. 

p. 54. In Fig.3.3, in the line at the figure middle, “li, F,” has been replaced by li, F, 0 and, “lm,
” has been replaced by lm, 0 

p. 55. In Table 3.1: 

the values of cvlength for P1, P2 and P3 (0.355, 0.338 and 0.344) have been replaced by 0.396, 0.385 and 
0.366, 

the values of Dm for P1, P2 and P3 (0.391, 0.420 and 0.436) have been replaced by 0.373, 0.401 and 0.419, 

the values of cvD for P1, P2 and P3 (0.259, 0.222 and 0.184) have been replaced by 0.345, 0.315 and 0.273. 

p. 60. In the first paragraph of the paragraph 3.2., the values 0.416, 0.222, 0.412 and 0.231 have been replaced by the 
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p. 64. In Fig. 3.7, the values 0.416 and 0.222 have been replaced by 0.394 and 0.314. The dotted fine line has been 
replaced by a fine curve slightly above the heavy line in its left part and slightly below in its right part. 

p. 65. In the first line, 0.412 and 0.231 have been replaced by 0.394 and 0.314. In the second and third lines, 
“Although was slightly underestimated,” Has been deleted. 
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INTRODUCTION AND PRESENTATION 
 

 
It is often important to estimate the number and size distribution of objects which are dispersed in a 

matrix. However, in many cases these objects can be observed only partially from slices made through the 

matrix. These slices produce object sections from which images are obtained when they are lighted. Here 
we consider approximately or perfectly spherical objects and approximately or perfectly circular surfaces. 
An example of such surfaces - which will be better illustrated later - is obtained on a plane which cuts 

perpendicularly a bundle of parallel cylinders. When a slice perpendicular to such surfaces is made 
through the matrix, sections of these objects are circle sections between two parallel planes. It is the case 
when an ultra-thin slice of plant phloem tissue is made in parallel to the sieve tubes which are shaped like 

cylinders. Estimation of components of this tissue which limit likely the tomato fruit expansion 
(Bussières, 2002) initiated the researches presented in this book. Another example is that of an observer 
who moves along a straight line in a landscape and comes across circular surfaces, characterized for 

example by the same type of plants, without he is able to see the limits of these surfaces. He can only see 
short distances and record the section length travelled in each surface. If these surfaces, with possibly 
different sizes, are distributed randomly in the landscape (that is his path is at random distances of their 

centres), he can want to estimate the number of surfaces per unit area of the landscape and the distribution 
of their diameter from the recorded section lengths.  

The size of a section obtained from perfectly circular or spherical objects depends on the object 

diameter and on the position of the slice into the object. When all the objects are entirely cut into small 
sections by a sufficient number of slices having a same thickness, the section size distribution is 
completely determinate by the object diameter distribution. Therefore it is possible to suspect that the 

object diameter distribution may be assessed from the section size distribution. However, generally there 
is only a small number of slices; they section only a small proportion of the objects and there is only one 
section per object. Moreover, as a slice cuts an object according to a probability increasing with its 

diameter, this has to be considered to obtain unbiased estimations. In addition, when a given slice is 
placed under light, the object sections are often only partially observed (for example, the light crosses a 
gas bubble section at the narrowest sectioned point), so that only images of these sections are obtained. 

Therefore, it is expected that the estimation of the number and diameter distribution of such objects 
would involve several factors: 

- the thickness of the slice, which can be smaller than the smallest diameter or greater than the largest 

diameter or to be intermediate. In the extreme case where it is zero, the matrix is in fact divided into two 
parts, 

- the transparency and opacity of the objects and matrix. For examples, gas bubbles in volcanic rocks 

are transparent objects in an opaque matrix. On the contrary, many cell components are seen under light 
microscopy to be opaque within a thin slice of transparent cytosol. Note that the atmosphere can be 
considered as a transparent matrix, 

- the limit of detection of the smaller images, 
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- the diameter distribution (possibly symmetrical, normal, or asymmetrical, with one or several peaks). 
However, many planar surfaces or volumes of interest which are observed, in particular by 

microscopy and imaging techniques, and in particular in materials science, geology, biology, histology, 
anatomy, are only approximately circular or spherical. Also in this case, the size of a given section 
obtained from a given object depends on the object size and on the position of the slice into the object. As 

the diameter - named equivalent diameter - of the circle or sphere with the same area or volume as that of 
these objects can be calculated, it is expected that the estimation of their numbers and sizes would involve 
also the previous factors, but with a greater complexity. 

Many studies were made to estimate the size distribution of spheres. Wicksell (1925) proposed a 
method valuable when the slice thickness is nil. Methods were proposed in the cases where the slice 
thickness is not zero for opaque spheres in a transparent matrix or transparent spheres in an opaque 

matrix. However, as these methods are not perfect, the Wicksell’s method is still often used even if the 
slice thickness is not quite zero and if the objects are not perfectly spherical.  

Here a new approach is proposed for the case where the slice thickness is less than the smallest 

diameter and perfectly circular or spherical objects whose diameter distribution is symmetrical. It is valid 
for both opaque objects in a transparent matrix and transparent objects in an opaque matrix and even with 
a detection limit of images. This new approach was found to be very fruitful for dealing with any 

distributions or only approximately circular shapes or the case of slices thicker than the largest diameter. 
However, this new approach was not published, although Reviewers of respected journals were very 

favourable to its publication, presumably mainly because this approach deals with perfectly circular or 

spherical objects and a normal diameter distribution - which are rare in nature - what is not in line with 
the present “modern stereology" largely focussed on new unbiased sampling methods for natural object 
shapes (Baddeley and Jensen, 2005). However, it was difficult to show at the same time his interest for 

any distributions, for only approximately circular shapes and for slices thicker than the diameters. 
Hence this book meets several manuscripts and presents, in the first three chapters, the case of slices 

thinner than the smallest diameter. The first two deal with the case of perfectly circular or spherical 

objects, the first with the case of a symmetrical and even normal diameter distribution, the second with 
the case of any distribution. The third chapter is for shapes only approximately circular. The fourth 
chapter deals with the case of slices thicker than the largest diameter. Finally, the fifth chapter indicate 

very briefly the case of objects in an opaque matrix visible only on section planes. 
I thank here anonymous Reviewers and Translators for their very helpful comments for these findings. 

Also, I thank Brigitte Delécolle for her help in electron microscopy and image interpretation and the 

Station of Pathology of INRA in Avignon, C. Vigne for his very competent contribution in making the 
bonbon slices, and Nadia Bertin for a number of advices. 
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CHAPTER 1 

 

Estimating the numbers and diameters of objects from their 

images in slices: an equation and a method for symmetrical 

diameter distributions 

 

Abstract 
 

Estimation of the numbers and diameters of circular, cylindrical, or spherical objects from their 
images obtained in slices through the embedding medium is investigated. Cases of limited image-

detection, of slices which are thick but smaller than the diameters, and of opaque or transparent objects 
are taken into account. From the general relations proposed here for these cases, an approximate equation 
was found for symmetrical or roughly symmetrical diameter distributions. It involves only the coefficients 

of variation of diameters and image lengths. Based on this equation, a very simple estimation method is 
proposed for such distributions. Valuable predictions were obtained in simulated or real examples when 
the slice was not too thick and the lower image-detection limit was not too high, and with at least a few 

dozen images. This method is expected to provide a basis for future methods for any diameter 
distributions, for only approximately circular objects or for very thick slices. 
 

1. Introduction 
 

Estimation of the numbers and diameter distributions of circular, cylindrical, or spherical objects from 

their images obtained in slices through the material in which they are included is often difficult, whereas 
these parameters are involved in important issues. An example is the case of plant phloem pores 
(Bussières, 2002), which are very short thin tubes of a few tenths of a micrometer in diameter. The sap 

flow is suspected largely to depend on their number and size. However they are difficult to estimate 
because the pores are visible almost solely in longitudinal slices. Other examples are related to roughly 
spherical components such as gas bubbles in volcanic magma (Sahagian and Proussevitch, 1998), neural 

vesicles (Feuerverger et al., 2000), and focal tissue lesions (Kopp-Schneider, 2003). 
Modern stereology methods (see the review by Cruz-Orive, 1997; Howard and Reed, 1998; Baddeley 

and Jensen, 2005) should be used for estimating the numbers and sizes of objects which are only 

approximately cylindrical or spherical, because these methods are based on sampling designs rather than 
on the object shape. However, use of these methods presents difficulties in certain cases. The dissector 
method may be difficult to use for extremely rare structures in tissue (Jastrow et al., 1997). With a large 

number of particles, perfect registration of the positions of the images in successive section planes is 
laborious (Davtian et al., 2000). When thick slices are used or when the image-detection limit is high, the 
larger parts of transparent objects included in opaque material or the smaller parts of opaque objects 

included in transparent material cannot be observed, as noted by the latter authors and by Hedreen (1998).  
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Fig. 1.1. Images of a circle of diameter D observable in a slice having a thickness t smaller than D and with image-
detection limit LS. Cases of a transparent circle in an opaque slice (case E) and of an opaque circle in a transparent 
slice (case F). 

When the distance xm of the slice midpoint from the circle center varies, the images seen by the observer on the 
plane at I are projections of circle chords. (a) shows a transparent circle which generates an image with length equal 
to that of the smaller of the two chords which delimit the slice. An opaque circle generates an image with length equal 
to that of the longer of the two chords which delimit the slice when the circle center is exterior to the slice (b) or to 
the diameter when it is interior to the slice (c). (d) shows the angles β and γ. (e) and (f) show the slice midpoint 
abscissa at the most extreme positions which can generate an image in cases E and F. For clarity, LS is not drawn on 
(b) and (c). 
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Moreover, controversies remain with regard to the particle-counting approach used in these methods 
(Baddeley and Jensen, 2005). These methods are also time-consuming, whereas in a number of cases, 

approximate estimates could provide useful information. Finally, in some cases, the aim is precisely to 
compare the objects to perfect shapes, for example, to compare plant phloem pores to tubes to be able to 
apply fluid flow laws. 

For these reasons, it can still be useful to research methods which compare the previously mentioned 
objects with circles, cylinders, or spheres and therefore to research firstly methods in the case of perfect 
circles, cylinders or spheres. Many studies have been performed to estimate sphere diameter distributions 

from the diameters of a number of their circular sections viewed in slices or sections. Several reviews are 
available in the literature (Weibel, 1980; Cruz-Orive, 1983; Cau, 1990; Kok, 1990; Stoyan et al., 1995; 
Howard and Reed, 1998; Baddeley and Jensen, 2005). Important references in recent years include 

Coleman (1983), Cruz-Orive (1983), Wilson (1989), Silverman et al. (1990), Fleischer (1994), Mase 
(1995), Feuerverger and Hall (2000), Antoniadis et al. (2001), and Xu and Pitot (2002). 

The problem differs according to whether the sphere images are obtained by intersection with planes 

or with thicker slices. In the latter case, it differs further for opaque objects included in transparent 
material and for transparent objects in opaque material (a case called the “Swiss cheese problem” by 
Coleman, 1983). It also differs according to whether the images are obtained with or without an image-

detection limit. Initially, the problem was studied by Wicksell (1925), who called it the “corpuscle 
problem” in the case of intersection with planes, i.e. slices of the thickness equal to zero. The case of 
transparent objects has been studied mainly by Coleman (1983), who proposed a solution which was valid 

only in the case of very thin slices. The various approaches taken to this problem have been classified by 
Cruz-Orive (1983) and more recently by Stoyan et al. (1995). Most of them use mathematical 
developments and equations (Abel’s integral, for example) which are difficult, and the methods are rather 

cumbersome for use by nonspecialists, including many biologists. Moreover, these methods, which work 
with a number of image size classes, need a rather large sample of images (some hundreds or thousands 
are generally used in the description of these methods). 

Here the cases considered involve slices which are thick, but less thick than the circle diameters, 
possibly of zero thickness, possibly with an image-detection limit, and of either opaque or transparent 
objects. Moreover, the case of circles cut by slices perpendicular to the circle plane, which yields images 

which are line segments rather than planar sections, is considered initially and constitutes the basis for the 
treatment of the cylinder and the sphere. After proposing some general relations, the author found that one 
of these relations is an approximate equation involving the two first moments of the circle diameter and 

the two first moments of the image length when the diameter distribution is symmetrical or approximately 
symmetrical. Therefore, the problem can be greatly simplified, and a simple method is described to 
estimate the mean and the coefficient of variation of the diameter for such distributions. The validity of 

these relations and methods has been studied with simulated or real examples, including fairly small 
samples. Valuable predictions have been obtained from these examples when the slice thickness was not 
too great and the image-detection limit not too high, and with at least several dozen images. 

 

2. Materials and methods 
 

2.1. Development of the model and relations 
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The cases of circular, cylindrical, and spherical objects are considered here. However, as will be 
shown later in this paper, the cases of cylindrical and spherical objects flow from the case of the circle. 

Therefore, first the developments for circular objects will be presented, and then they will be extended to 
cylinders and spheres. 

Consider a circle in (x, y, z) space, on a plane perpendicular to the z-axis, having its center at (0, 0), 

with diameter D and radius R (Fig. 1.1a). Consider a slice of thickness t, perpendicular to the x-axis, with 
its midpoint having abscissa xm. The possible forms of the intersection between the circle and the slice are 
a circular cap or a circle segment delimited by two chords, AB and A’B’. Consider the image of this 

intersection obtained by its projection without magnification onto a plane perpendicular to the x-axis at a 
point I external to the circle and to the slice. There are two cases: the circle is either more transparent (the 
case denoted by E, for “empty”) or more opaque (the case denoted by F, for “full”) than the slice matrix. 

In case E, an image can be obtained only if the circle is cut by the two faces of the slice, or in other 
words, if t < D and if |xm| < R – t / 2. The image length is that of the shortest chord (A’B’ in Fig. 1.1a). In 
case F, an image can be obtained only if the circle is partly or entirely in the slice. If t < D, this occurs if 

|xm| < R + t / 2. The image length is that of the longest chord (AB in Fig. 1.1b) when the circle center is 
outside the slice, or is equal to D when the circle center is inside the slice (Fig. 1.1c). The case where t > 
D is not considered here. 

However, images are obtained only if they are longer than the shortest detectable image length, LS 
(Fig. 1.1a). The diameter of the smallest circle which can generate at least one image is equal to (LS

2 + 
t
2)0.5 in case E and to LS in case F. 

When several circles of the plane are cut by the slice, images composed of overlapping circle images 
can be obtained in case F, but not in case E. Here, the case of such images is excluded. 

Consider now, at least virtually, a set of parallel slices having their abscissa values xm equally spaced 

by a very small value dx—relative to the smallest diameter—which cut one or several circles on the plane 
or on parallel planes. This is possible even if t is thicker than dx, if the slices are cut successively and 
replaced after recording the circle images. When only one circle or circles having the same diameter D are 

considered, or when the diameter distribution is symmetrical or roughly symmetrical, relations can be 
obtained between various parameters relative to the circles and their images, as shown later in this paper. 

 
Tabèle 1.1. Relations between the diameter (D) of a circle cut by a set of slices of thickness t equally spaced by 1 / q, 

the number (M) of images, and the mean (Lm) and the coefficient of variation (cvL) of the image length when the 

image-detection limit is LS 

The angles β and γ are equal to asin (LS / D) and acos (t / D) respectively. Some relations differ in case E 

(transparent circle sectioned by opaque slices) and in case F (opaque circle sectioned by transparent slices). 

 
 Case E Case F Eqs. 

c1 = cos β – cos γ cos β + cos γ T1-1 

c2 = 2γ - 2β - sin 2γ + sin 2β π - 2β + 4 cos γ + sin 2β T1-2 

c3 = (3 - cos2 β) cos β - (3 - cos2 γ) cos γ (3 - cos2 β) cos β + 3 cos γ T1-3 

M / D = q c1 T1-4 

Lm / D = c2 / 4 c1 T1-5 

(L2)m / D2 = c3 / 3 c1 T1-6 

cvL
2 = 16 c1 c3 / 3 c2

2 - 1 T1-7 
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Approximately similar relations can also be obtained when one single, almost infinitely long slice cuts 

a sufficiently large number of circles which centers are at random distances from the middle of the slice. 
This is also true when this almost infinitely long slice is constructed from an equivalent set of slice 
portions such that each circle is cut by at most one slice portion. 

 
2.1.1. Case of one or several circles of diameter D 

 

Consider all the images generated by the previous circle of diameter D when it is cut, at least virtually, 
by a set of parallel slices such that xm varies by a small value dx, between –R + t / 2 and R – t / 2 in case E 
or between –R – t / 2 and R + t / 2 in case F. Let q be the number of slices per unit length along the x-axis, 

which is equal to one unit length divided by dx. Let β, which is equal to asin (LS / D), be the half-angle at 
the center of the circle which supports a chord of length LS (Fig. 1.1d). Let γ be the angle at the center of 
the circle equal to acos (t / D) such that R cos γ = t / 2. Moreover, let c1 be the difference cos β – cos γ in 

case E or the sum cos β + cos γ in case F (Eq. 1 in Table 1.1). 
In case E, if an image is observed, R cos γ is shorter than or equal to R cos β. Thus, the abscissa xm of 

a slice which generates an image varies between –R c1 and R c1 (Fig. 1.1e). When xm varies from –R c1 to 

0, the abscissa x of the chord which generates an image varies from –R cos β to –R cos γ. When xm varies 
from zero to R c1, the abscissa x varies from R cos γ to R cos β (Fig. 1.1e). No image of a chord with an 
abscissa between –t / 2 and t / 2 can be observed. The number of images is: 

M = 
- R cos β

∫ 
R cos β

q dx – 
- R cos γ

∫ 
R cos γ

q dx                                                                               (1) 

Because the length of each chord is:  

L = 2 (R2 – x2)
0.5

                                                                                                                  (2) 

the sum of the image lengths obtained when x varies from –R cos β to –R cos γ is: 

SE1 = 
- R cos β

∫ 
- R cos γ

2 (R2 - x2)
0.5

 q dx                                                                                    (3) 

and the sum SE2 of the image lengths obtained when x varies from R cos γ to R cos β is given by an 
equation similar to Eq. (3), in which the limits are R cos γ and R cos β. The sum of the image lengths is 
equal to SE1 + SE2. 

In case F, the abscissa xm of a slice which generates an image varies between –R c1 and R c1 (Fig. 
1.1f). When xm varies from –R c1 to –R cos γ, the abscissa x of the chord which generates an image varies 
from –R cos β to 0. When xm varies from –R cos γ to R cos γ, the abscissa x is equal to zero (Fig. 1.1c). 

When xm varies from R cos γ to R c1, the abscissa x varies from zero to R cos β (Fig. 1.1d). The total 
number of images is given by Eq. (1), but with the minus sign between the two sums replaced by the plus 
sign. The sum of the lengths of the images is equal to SF1 + SF2 + SF3, these sums being given by equations 

similar to Eq. (3), in which the limits are –R cos β and 0, –R cos γ and R cos γ, and 0 and R cos β 
respectively, and in which x is equal to zero in the case of SF2. 

After integration, the ratio M / D is given by Eq. 4 in Table 1.1. The ratio of the first moment of the 

image length, which is the mean image length, Lm, to D is given by Eq. -5 in Table 1.1, in which c2 is 
given by Eq. 2 in Table 1.1. This ratio Lm / D depends only on LS / D and t / D. Fig. 1.2 shows values of 
Lm / D calculated by these equations with given values of LS / D and t / D with respect to LS / Lm and t / Lm 

(which are equal to LS / D and t / D divided by Lm / D respectively).  
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Fig. 1.2. Variations of Lm / D or of cvL with respect to t / Lm and Ls / Lm according to Eqs. 2 in Table 1.1 in cases E 
and F. 

Each line meets points for which the value of Lm / D is the same (indicated only for the heavy lines). In case E, 
two figures for which the abscissa scale is different are given for Lm / D or cvL. All points were obtained from values 
of t / D spaced 0.01 apart between 0 and 0.99 and values of Ls / Lm which were predicted by successive 
approximations made using Eqs. 2 and 4 in Table 1.1, with the values of Lm / D spaced 0.01 apart between 0.15 and 
0.99 and the values of cvL spaced 0.02 apart between 0.02 and 0.34. In case F, Lm / D is always greater than 0.784 and 
cvL is always less than 0.284. 

 

Based on Eq. (2), the second moment of the image length, (L2)m, which is the mean squared image 
length, is: 

(L2)m = 
M

1 { 
- R cos β

∫ 
R cos β

4 (R2 – x2) q dx  ± 
- R cos γ

∫ 
R cos γ

4 (R2 – x2) q dx }                        (4) 

with a minus sign in case E and a plus sign in case F, and with x2 being equal to zero in the second term in 
case F. After integration, (L2)m / D2 is given by Eq. 6 in Table 1.1. 

The squared coefficient of variation, cvL
2, of the image length, which is equal to the ratio of the second 

moment to the squared first moment minus one, is given by Eq. 7 in Table 1.1. Fig. 1.2 shows the values 
of cvL calculated by this equation for given values of LS / D and t / D with respect to LS / Lm and to t / Lm. 

The previous relations are also obtained when the images are generated from a sufficiently large 
number n of circles of diameter D, each circle being cut by at most one slice of which the midpoint is at a 
distance |xm| from the circle center, which distance varies by a small value dx between zero and R – t / 2 in 

case E or zero and R + t / 2 in case F (Fig. 1.3b). On account of the symmetry of a circle around its center, 
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Fig. 1.3. Various cases of circles which generate similar sets of images: 

(a) a circle is cut by equally spaced parallel slices; (b) the three slices in the left part of (a) are obtained from 
three different circles; (c) the three slices of case (b) are obtained from slices made through the volume in various 
directions; (d) the three slices of case (b) are obtained from a common slice made through the volume (here it is more 
evident than in the two previous cases to say that the distance of the circle centers to the slice varies, but in all three 
cases, the distance between the slices and the circle centers in fact varies); (e) case of three circles (possibly 
equatorial circles of spheres) in three different planes, 1, 2, and 3, cut perpendicularly by a slice of thickness t, with a 
section SA equal to L L’. The images of these circles are the chords indicated by heavy lines in case F (in the case in 

which the circles are equatorial circles of spheres, circular sections are shown in the slice). 
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 the same images can also be obtained from slices which are not parallel (Fig. 1.3c). They can also be 
obtained from a single slice which cuts the n circles of which the centers are at distances from the slice 

midpoint which differ by a small value dx (Fig. 1.3d). These relations can also be expected, with a 
probable deviation due to sampling, when the distances between the slice(s) and the centers of the n 
circles vary randomly between zero and R – t / 2 in case E or zero and R + t / 2 in case F. Finally, they can 

also be expected when the circles are in different parallel planes. In all these cases, a number of circles do 
not generate an image, and the number of images is: 

M = 
tD

Dcn

±
1          (minus sign: case E; plus sign: case F)                                                  (5) 

This equation is similar to Eq. 4 in Table 1.1 with q equal to 1 / dx and (D ± t) / n equivalent to dx. 
 

2.1.2. Case of a population of circles having possibly different diameters 

 
Consider a population of n circles on a plane which have possibly different diameters. Let g be the 

function by which the fraction g(D) of the population of circles having diameters between D and D + dD 
is related to D. This function g, which could be evaluated if the diameter distribution was known, will be 
eliminated in the cases considered following. Evidently: 

  
0D
∫
∞

=

g(D) dD = 1                                                                                                                    (6) 

Consider a set of parallel slices spaced by small dx and perpendicular to the plane. Assume the circles 
to be positioned so that their images obtained from the slices do not overlap. Because the number M of 

images of a circle of diameter D is equal to q c1 D (Eq. 4 in Table 1.1), the total number, m, of images of 
the n circles is: 

m =   
0D
∫
∞

=

q c1 D n g(D) dD                                                                                                    (7) 

Denoting by Lm and (L2)m the first and second moments of the image length of a circle of diameter D, 
the first moment, lm, and the second moment, (l2)m, of the length of the m images are: 

lm = 
m

1   
0
∫
∞

=D

Lm M n g(D) dD                                                                                              (8) 

(l2)m = 
m

1   
0
∫
∞

=D

(L2)m M n g(D) dD                                                                                      (9) 

in which M, Lm, and (L2)m vary with D. From Eqs. 5 and 7 in Table 1.1, Eqs. (8) and (9) give:  

lm = 
B

A      with A =   
0
∫
∞

=D

c2 D
2 g(D) dD     and B = 4   

0D
∫
∞

=

c1 D g(D) dD                         10) 

(l2)m = 
B

A    with A =   
0
∫
∞

=D

c3 D
3 g(D) dD     and B = 3   

0D
∫
∞

=

c1 D g(D) dD                       (11) 

The squared coefficient of variation (cvlength
2) of the image length can be obtained from Eqs. (10) and 

(11) as: 
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cvlengths
2
 = 

( )
( )

12
m

m
2

−
l

l                                                                                                          (12) 

 
2.1.3. Approximations in the case of a sample and especially of an almost infinitely long slice 

 
Consider a part of a plane with area A where the number n of circles is large. Consider a set of slices L 

long, parallel, and spaced by a small dx along a distance Dmax ± t (with a minus sign in case E and a plus 
sign in case F), Dmax being the diameter of one rather large circle of the population such that the plane 
region, Dmax ± t wide and L long, cut by these slices contains a sample of the circle population. This 
occurs if the number of circles is sufficiently large, and thus if L is sufficiently long (the case described as 

an “almost infinitely long slice”). Evidently, like any sample, this one probably does not contain the 

largest or the smallest circles in the population. The number of circles having centers falling in this region 
is: 

nDmax = 
( )

A

L tDn ±max                           (minus sign: case E; plus sign: case F)          (13) 

The number of slices is q (Dmax ± t). The number mDmax of images of the nDmax circles is given by Eq. 
(7), with n equal to nDmax. 

If, in this region, the distances between the circle centers and the slices are random, and if the number 
of circles cut by each slice is sufficiently large, then each slice cuts a sample of circles having almost the 
same diameter at various distances from its center. Note that this is independent of the circle density, 
which can vary along L. Therefore, because the slices are roughly similar, the number mDmax, one of images 

of circles obtained from only one almost infinitely long slice is, based on Eq. 7: 

mDmax, one = 
tD

nD

±max

max   
0
∫
∞

=D

 c1 D g(D) dD  (minus sign: case E; plus sign: case F)         (14) 

and Eqs. (10) to (12) are approximately valid for the images obtained by this slice.  
Evidently, a sufficiently large set of slice portions, each taken from sampled regions like the previous 

plane region, Dmax ± t wide, of the surface A, is equivalent to an almost infinitely long slice. The circle 

density and diameter distributions in the various regions can be different; it is sufficient only that the 
distances between the midpoints of the slice portions are greater than Dmax ± t, so that each circle is cut by 
at most one slice portion. 

 
2.1.4. Approximations for the case in which c1, c2, and c3 vary only slightly 

 

Fig. 1.4 shows that c1, c2, and c3 vary only slightly when the ratios D / t or D / LS are high. 
Therefore, in this case, if t and LS are given, c1, c2, and c3 vary only slightly relative to D, and a 

fortiori to D2 or D3. Therefore, in Eqs. (10) and (11), they can be factored. Evidently, they can also be 

factored if D varies only slightly and if D / t, D / LS, or both are smaller. In particular, their mean values 
are approximately equal to that which would occur if all the circles had the same diameter, this diameter 
being equal to that of a circle generating images of mean length equal to lm. Let Dlm be this diameter, βDlm 

and γDlm the angles, equal to acos (t / Dlm) and to asin (LS / Dlm), indicated in Eqs. 3 and 4 in Table 1.2, 
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Fig. 1.4. Variation of c1, c2, or c3 with respect to the ratios D / t and D / LS in cases E and F. 

Fine lines: variations when t = 0 in cases E and F. Heavy lines: variations when LS = t in cases E (lower heavy 
line) and F (higher heavy line). Dotted lines: variations when LS = 0 in cases E (lower dotted line) and F (higher 
dotted line). Note that in case E, the values of D / t and D / LS are greater than 1.414 (the square root of 2) if t and LS 
are equal, because t and LS are constrained by the relation D 2 > t2 + LS

2. 
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Table 1.2. Equations to estimate the number of circles and the mean and coefficient of variation of their diameters 

when the diameter distribution is symmetrical or roughly symmetrical. 

Some relations differ in case E (transparent circle sectioned by opaque slices) and in case F (opaque circle 

sectioned by transparent slices). 

 

 Case E Case F Eqs. 

lm / Dlm = relations with (LS / lm) and (t / lm) shown in Fig. 2  

LS / Dlm = (LS / lm) (lm / Dlm) T2-1 

t / Dlm = (t / lm) (lm / Dlm) T2-2 

βDlm = asin (LS / Dlm) T2-3 

γDlm = acos (t / Dlm) T2-4 

c1, Dlm = cos βDlm – cos γDlm cos βDlm + cos γDlm T2-5 

c2, Dlm = 2γDlm – 2βDlm – sin 2γDlm + sin 2βDlm π - 2βDlm + 4 cos γDlm + sin 2βDlm T2-6 

c3, Dlm = (3 – cos2 βDlm) cos βDlm – (3 - cos2 γDlm) cos γDlm (3 - cos2 βDlm) cos βDlm + 3 cos γDlm T2-7 

cvL, Dlm
2 = 16 c1, Dlm c3, Dlm / 3 c2, Dlm 2 – 1 T2-8 

∆ =  (cvL, Dlm
2 + 1) (9 cvL, Dlm

2 – 8 cvlengths
2 + 1)  T2-9 

cvD
2 = (3 cvL, Dlm

2 – 2 cvlengths
2 + 1 ± ∆0.5) / 2 (cvlengths

2 + 1) T2-10 

Dm = 4 lm c1, Dlm / {c2, Dlm (cvD
2 + 1)} T2-11 

βDm  = asin (LS / Dm) T2-12 

γDm  = acos (t / Dm) T2-13 

c1, Dm = cos βDm – cos γDm cos βDm + cos γDm T2-14 

Case of slices equally spaced by small dx  

n = m / (q c1, Dm Dm) T2-15 

Case of an almost infinitely long slice  

n = 
case of a surface:                                  mDmax, one A / (L c1, Dm Dm) 

case of a volume:                                  mDmax, one V / (SA c1, Dm Dm) 
T2-16 

 

 

and c1, Dlm, c2, Dlm, and c3, Dlm the values of c1, c2, and c3 indicated in Eqs. 5 to 7 in Table 1.2. Let Dm, 
(D2)m, and (D3)m be the first, second, and third moments of the diameter distribution of the circles. Eqs. 
(10) to (12) provide the following approximations: 

lm ≈ 
( )

mm,1

m
2

m,2

4 Dc

Dc

Dl

Dl                                                                                                           (15) 

(l2)m ≈ 
( )

mm,1

m
3

m,3

3 Dc

Dc

Dl

Dl                                                                                                        (16) 

cvlengths
2 ≈ 

( )
( )

1
3

16
2

m
22

m,2

m
3

mm,3m,1
−

Dc

DDcc

Dl

DlDl                                                                            (17) 

Because the ratio 16 c1, Dlm c3, Dlm / 3 c2, Dlm
2 is obtained from Eq. 7 in Table 1.1, Eq. 17 becomes: 

cvlengths
2 + 1 ≈ (cvL, Dlm

2 + 1) ( )
( ) 2

m
2

m
3

m

D

DD                                                                         (18) 

representing by cvL, Dlm the coefficient of variation (cvL in Eq. 7 in Table 1.1) of the length of images as 
given by the circle of diameter Dlm. 
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Moreover, in Eq. (7), c1 can be factored. Assuming here that Dm is known and representing by βDm and 
γDm the angles given by Eqs. 12 and 13 in Table 1.2, the value of c1, now called c1, Dm, is given by Eq. 14 

in Table 1.2. It follows that: 
m = n q c1, Dm Dm                                                                                                         (19) 

In the case of one almost infinitely long slice, Eqs. (13) and (14) give: 

mDmax, one = 
A

L mm,1 Dcn D                                                                                              (20) 

 

2.1.5. Approximation of the case in which c1, c2, and c3 vary only slightly and in which the distribution is 

symmetrical 

 
If the diameter distribution is symmetrical, Eq. (18) gives, after the calculations indicated in Annex, 

the quadratic equation in (cvD
2 + 1): 

(cvlengths
2 + 1) (cvD

2 + 1)2 – 3 (cvL, Dlm
2 + 1) (cvD

2 + 1) + 2 (cvL, Dlm
2 + 1) ≈ 0                   (21) 

where cvD is the coefficient of variation of the diameter. 
 

2.1.6. Case of circles on different parallel planes 

 
Consider (Fig. 1.3e) a population of n circles randomly dispersed on different parallel planes spaced 

along a distance L’ in a large volume V, each circle being cut perpendicularly by one slice at most, of 
which the largest surface area is denoted by SA (equal to L’ L). If the diameter of a rather large circle is 

Dmax, a region Dmax ± t wide and of sectional area SA is an unbiased sample of the volume. All the 

previous equations are valid for these circles and their images obtained from an almost infinitely long 
slice in this region if L and A are replaced by SA and V respectively. Eq. (20) then becomes:  

mDmax, one = 
V

mm,1 DcSn DA                                                                                            (22) 

 

2.1.7. Application to sphere or cylinder images 

 
Because an image of a sphere cut by a slice is a circle (Fig. 1.3e), whereas a diameter of this circle is 

equal to a chord of the equatorial circle of the sphere in a perpendicular plane, images of spheres 
dispersed in a medium are also chords of their equatorial circles. Because a cross-section of a cylinder is a 
circle, images of cylinders dispersed in a medium, which are generated by slices parallel to the cylinder 

axis, are chords of their circular sections. Thus the relations previously developed for circles are also 
applicable to spheres and cylinders. 

 

2.2. Proposed method 

 
Consider a set of images of circles possibly obtained from spheres or cylinders and generated either 

from a set of slices of thickness t which are equally spaced by a very small distance dx, or from a single 
random, almost infinitely long slice of thickness t. When this latter case consists of a set of slice portions, 
each must be selected at random from each sampled region of surface A, and the slice portions must be 

distant from each other by more than Dmax ± t. Therefore, Dmax has to be evaluated before sampling, for 
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example by the dissector method, or else it is necessary to verify a posteriori that (Lmax
2 + t2)

0.5
 – t in case 

E or Lmax + t in case F, Lmax being the greatest image length, is shorter than the distance between the 
midpoints of the slices. 

Suppose that i) only images longer than LS can be measured, ii) the images of two or several circles 

obtained by a slice do not overlap in case F (this is not possible in case E), and iii) the circles are not 
smaller than t in case F. To satisfy this last condition when the smallest circle size is unknown, only 
images longer than t are considered, and LS is increased to be equal to t. In case E, where no image of any 

circle smaller than t can be obtained, the estimates will be made relative to circles larger than the greater 
of t or LS; in case F, they will be made relative to circles larger than LS. 

Based on the relations presented previously, a method is proposed below to estimate the number of 

circles and the mean and coefficient of variation of the diameter when its distribution is symmetrical or 
roughly symmetrical. The special but simple case of a single circle or several circles known to have the 
same diameter value which has to be estimated is first presented. These methods vary slightly according 

to whether the images are obtained from a set of slices of thickness t equally spaced by a very small 
distance dx or from only one randomly chosen, almost infinitely long slice of thickness t. 
 

2.2.1. Case of a circle or circles having the same diameter 

 
Let D, Lm, and cvL represent the circle diameter, mean, and coefficient of variation respectively of the 

M image lengths.  
D is estimated from Lm, t, and LS by successive approximations, substituting values of D into the 

equation for Lm derived from Eq. 5 in Table 1.1 until the calculated value of Lm is sufficiently close to its 

measured value. Rough estimates can be obtained from Fig. 1.2, with D obtained by dividing Lm by Lm / 
D. If t or LS is poorly known, t / Lm or LS / Lm can be estimated from cvL and LS / Lm or t / Lm using Fig. 
1.2. 

The number of circles is estimated as M / q c1 D, based on Eq. 4 in Table 1.1, when the images are 
obtained from slices equally spaced by small dx, or as M (D ± t) / c1 D, based on Eq. (5), when they are 
obtained from a single, almost infinitely long slice. 

 
2.2.2. Case of circles of which the diameter distribution is symmetrical or roughly symmetrical 

 

Let Dm, cvD, lm, and cvlengths represent the means and coefficients of variation of the n circle diameters 
and of the m image lengths. 

From lm, t, and LS, Dlm is estimated as previously described for the case of a circle, with Lm and D set 

equal to lm and Dm respectively. Then the values of LS / Dlm, t / Dlm, βDlm, γDlm, c1, Dlm, c2, Dlm, c3, Dlm, and 
cvL, Dlm are calculated using Eqs. 1 to 8 in Table 1.2. 

There are one or two values of cvD
2 which are calculated using Eq. (21), for which the general form is: 

a (cvD
2 + 1)

2
 + b (cvD

2 + 1) + c = 0. If the quantity b2 - 4 a c, denoted by ∆ and calculated using Eq. 9 in 
Table 1.2, is positive, in other words, if 9 cvL, Dlm

2 – 8 cvlengths
2 +1 > 0, then the two values of cvD

2 are 

given by Eq. 10 in Table 1.2. These values are symmetrical relative to the value of cvD
2, which is equal to 

(3 cvL, Dlm
2 – 2 cvlengths

2 +1) / 2 (cvlengths
2 + 1), which verifies Eq. (21) when ∆ is nil. Because of 

approximations in the measurements, a small sample size, or both, ∆ may be slightly negative, especially 



Chap. 1                                Symmetrical Diameter Distributions and Slices Less Thick than the Diameters 
_____________________________________________________________________________________  

- 16 - 

if its true value is very small. In this case, ∆ is set equal to zero. When ∆ is positive, one value of cvD
2 

may also be negative for the reasons previously stated, especially if the true value of cvD is very small. In 

this case, cvD
2 is set equal to zero. 

Based on the values of cvD
2, there are one or two groups of values of Dm and n which are obtained 

using Eqs. 11 to 16 in Table 1.2, Eq. 11 in Table 1.2 being obtained from Eq. (15) in which (D2)m, the 

second moment of D, is: 
(D2)m = (cvD

2 + 1) (Dm)2                                                                                                    (23) 
and Eqs. 15 and 16 in Table 1.2 being derived from Eqs. (19), (20), and (22). 

When there are two groups, one of them must be selected. This choice can be made in a number of 
cases and in a number of ways as shown below, especially if the symmetrical distribution is simple, for 
example normal or roughly normal. 

First, when in a particular group, n is very small and not close to a whole number, this group is 
eliminated. Second, a group may be eliminated if its cvD is too high, because the probability that a random 
variable is distant from its mean value by more than k times its standard deviation is less than 1 / k

2 

(Bienaymé-Tchebycheff’s inequality). For example, in the case of a normal or roughly normal 
distribution, a group is eliminated if its shortest or longest diameter or both, as predicted by cvD and Dm, is 

negative or very different from Lmax in case F or from (Lmax
2 + t2)

0.5
 in case E. These diameters are equal 

to Dm (1 ± τ cvD), τ being the value of the unit normal probability density function for the probability 1 – 
1 / 2 n. Therefore, the predicted shortest diameter is estimated to be negative if τ cvD is greater than one, 

or in other words, if cvD is greater than, for example, 0.78, 0.39, or 0.30 when n is greater than or equal to 
5, 100, or 1000 respectively. Thus, in the case of an almost infinitely long slice in which the number of 
images is less than n, the shortest diameter will be negative if cvD is greater than the limit given by the 

number of images. Therefore, generally, the smallest value of cvD is selected (see Results). 
Moreover, a group is selected if the distribution of the image lengths calculated for a sample of circles 

with the values of cvD
2 and Dm of this group is very close to the observed image-length distribution. 

Determining this consists of calculating the length of the image of each circle possibly generated by a 
slice of which the midpoint is at a distance |xm| from the circle center, with the distance varying by a small 
value between zero and the radius of the largest circle minus t / 2 in case E or plus t / 2 in case F. For a 

given circle of radius R and a given slice, the length of the image obtained is calculated as follows. In case 
E, if |xm| > R – t / 2, no image is considered. Otherwise, the circle image length is equal to 2 [R2 – (|xm| + t 

/ 2)2]
0.5

. In case F, if |xm| > R + t / 2, no image is considered. Otherwise, if |xm| < t / 2, then the image 

length is equal to D, else it is equal to 2 [R2 – (|xm| – t / 2)2]
0.5

. However, in both cases, E and F, if the 

image length is shorter than LS, no image is considered.  

If neither of the two groups of values can be selected, the diameter distribution may not be a simple 
symmetrical distribution or may not be symmetrical at all. Perspectives on such cases are given at the end 
of this paper. 

 

3. Results 
 

A number of examples were considered to validate the previously proposed relations and method. 
 

3.1. Case of perfectly symmetrical distributions and of slices equally spaced by small dx, with t / D and 
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LS / D equal to zero: set of three circles 

 

Two sets of three circles 2, 10, and 18 mm in diameter (set s1, cvD = 0.653, Dm = 10) and 10, 12, and 
14 mm in diameter (set s2, cvD = 0.136, Dm = 12) were considered to examine a simple case and especially 
the selection of the value of cvD. The image lengths were calculated as the lengths of all parallel chords 

equally spaced by one-thousandth of the diameter of the largest circle, with t and LS equal to zero. Thus 
there were 1665 and 2571 images in s1 and s2 respectively. These lengths were then assumed to be 
measured lengths, and the diameters were assumed to be unknown. The values of lm were 11.216 and 

9.601 mm for s1 and s2 respectively, those of cvlengths were 0.458 and 0.315, and those of the longest 
images were 18.000 and 14.000 mm. 

The relations shown in Table 1.2 predict two possible groups (a and b) of values of cvD, Dm, and n for 

each set: 0.494, 11.484 mm, and 2.61 (a) or 0.661, 9.937 mm, and 3.01 (b) for s1, and 0.136, 12.004 mm, 
and 2.99 (a) or 0.965, 6.332 mm, and 5.68 (b) for s2. Group (b) for s1 and group (a) for s2 were selected 
because in these groups, the predicted number of circles, which is small, is close to a whole number. 

Moreover, for s2, the longest diameter (15.638 mm) predicted for group (b), assuming a normal 
distribution, is longer than the longest image (an obvious prediction because the value of cvD is larger 
than the expected largest value (0.78) previously indicated for n = 5 in a normal distribution). These 

estimates are close to the real values. 
With smaller numbers of equally spaced chords, the estimates were still close to the true values. For 

examples, with chords spaced by one-hundredth of the largest diameter (there were 165 and 255 images 

in s1 and s2 respectively), cvD, Dm, and n were calculated as 0.707, 9.59 mm, and 3.10 for s1 and 0.104, 
12.18 mm, and 2.93 for s2. 

With very small numbers of chords spaced by a tenth of the greatest diameter, cvD
2 was negative in 

some cases, for example in group (a) of s2 with only 25 images. By setting cvD equal to zero, Dm and n 
were calculated to be 12.49 mm and 2.80, values which are only slightly different from the true values. In 
group (b), cvD was very much larger. In s1, with only 15 images (1, 5, and 9 images from the three circles 

2, 10, and 18 mm in diameter respectively), the estimated values of cvD, Dm, and n were 0.280, 14.3 mm, 
and 1.9 for group (a) and 0.864, 8.8 mm, and 3.07 for group (b). Therefore, neither of the two groups 
could be selected based on their estimated numbers of circles (both close to whole numbers) or on the 

estimated longest diameters (18.18 and 17.78 mm) (both close to those of the longest images). This means 
that for s1, the number of images (15) was too low to select one of the two groups. 

Even with a greater number of chords, for example chords spaced by one-thousandth of the largest 

diameter, there were cases of sets of three circles, for example with diameters equal to 3, 10, and 17, for 
which ∆ was found to be negative, with 8 cvlengths

2 being slightly larger than 1 + 9 cvL, Dlm
2. Therefore, cvD, 

Dm, and n were estimated with ∆ = 0. The estimates were very close to the real values (0.577, 9.95, and 

3.02 vs. 0.572, 10, and 3). 
 

3.2. Case of slices equally spaced by small dx: effects of the distribution and of t / D and LS / D 

 

Five populations of one hundred circles were constructed to have symmetrical or approximately 
symmetrical diameter distributions (Fig. 1.5 and Table 1.3a). Various values of t and LS were considered, 

with (LS
2 + t2)

0.5
 and t being smaller than the diameter of the smallest circle in cases E and F respectively. 
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To assess only the effect of the distribution type, without any deviation due to random sampling, the 
circle images were obtained from slices equally spaced by one-hundredth of the radius of the largest circle 

in the population minus t / 2 in case E or plus t / 2 in case F. The number of images ranged from 
approximately 1000 to 8000 depending on the distribution and the values of t and LS. The image lengths 
were calculated as in the previously described test and considered as measured values. Then lm and 

cvlengths were calculated. The values of cvD, Dm, and n were estimated by the proposed method. In all 
cases, cvD was estimated by the smaller root of Eq. (21) and was less than 0.40, because the value of cvD 
estimated by the larger root was greater than 0.76, which is much greater than the highest value expected, 

as previously indicated, for a sample with one hundred circles from a normal population (0.39). 
 

 
Fig. 1.5. Diameter distributions for five populations of circles. 

Populations 1 and 2 (Dm = 10.0; cvD = 0.099 and Dm = 10.0; cvD = 0.189 respectively) are taken from normal 
distributions (Dm = 10.0; cvD = 0.1 and Dm = 10.0; cvD = 0.2 respectively). Distribution 3 is derived from population 
2, the diameter being equal to 10 in all the classes between 30% and 70% (Dm = 10.0; cvD = 0.185). Populations 4 and 
5 (Dm = 10.0; cvD = 0.171 and Dm = 10.0; cvD = 0.243 respectively) are taken from beta distributions with parameters 
(p = 2.9; q = 1.09; min = 3.6; max = 12.35) or (p = 0.7; q = 1.4; min = 7; max = 16.1) respectively, p and q being the 
standard parameters of the beta distribution of the variable (D – min) / (max – min). Population 3 is slightly displaced 
upward to fit onto the figure. Fisher’s coefficients of asymmetry (g1) and skewness (g2) are, for the five populations 
respectively: (0; -0.17), (0; -0.17), (-0.02; -0.06), (-0.77; -0.11), (0.61; -0.74). 

 

In the three symmetrical distributions (1, 2, and 3), cvD was very close to the real values when t and LS 
were small (Table 1.3a). When t and LS were larger, cvD was slightly underestimated in case F. In case E, 
these parameters were underestimated when LS was high and overestimated when t was high. In 

distribution 4, cvD was almost always underestimated (estimated values between 0.128 and 0.182 vs. the 
true value of 0.171). In distribution 5, cvD was highly variable with respect to t and LS in case E, whereas 
it was close to the real values in case F except when LS alone was very large. Dm and n were very close to 

the real values (estimated values between 9.8 and 10.3 vs. a true value of 10.0 for Dm; estimated values 
between 94 and 102 vs. a true value of 100 for n), except for distribution 5 when LS alone was very large 
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Table 1.3a. Coefficients of variation of the diameter (cvD), mean diameter (Dm), and number of circles (n) estimated by the proposed method from the images 

generated by slices equally spaced by small dx, compared with the real values. 

Cases of five populations of 100 circles of which the diameter distributions are shown in Fig. 5. The two cases, E (transparent circles) and F (opaque circles), are 

considered with various arbitrary values of t and LS. The diameters of the smallest circles of populations 1 to 5 are 7.4, 5.1, 5.1, 5.0, and 7.0 respectively. Because 

only circles larger than (t2 + LS
2
)
0.5

 in case E or LS in case F can generate images, only arbitrary values of t and LS for which the smallest circle can generate at least 

one image were examined (except for distribution 5 in case E with t and LS equal to 5, for which only four circles were too small). As predicted, the values are 

approximately equal in both cases E and F when t = 0, small differences being due to approximations in Lm / D. 

 

   Distribution 1 Distribution 2 Distribution 3 Distribution 4 Distribution 5 
   cvD Dm  n cvD Dm  n cvD Dm  n cvD Dm  n cvD Dm  n 

Real values: 0.10 10.0 100 0.19 10.0 100 0.19 100 100 0.17 10.0 100 0.24 10.0 100 
t LS  (t2 + LS

2)
0.5

                
Case E                 

0 0 0000 0.10 10.0 101 0.19 10.0 101 0.19 10.0 101 0.16 10.1 100 0.26 9.9 102 
3 0 3.000 0.11 10.0 100 0.21 10.1 99 0.20 10.1 98 0.17 10.2 99 0.30 10.0 102 
5 0 5.000 0.13 10.2 96 0.24 10.2 98 0.24 10.1 99 0.18 10.3 96 0.36 9.9 103 
7 0 7.000 0.19 10.2 94          0.40 10.3 94 
0 3 3.000 0.09 10.0 100 0.18 10.1 100 0.18 10.1 100 0.14 10.2 99 0.25 10.1 100 
0 5 5.000 0.08 10.1 99 0.16 10.3 96 0.16 10.2 97 0.13 10.3 96 0.23 10.3 96 
0 7 7.000 0.08 10.2 97          0.19 11.0 80 
3 3 4.243 0.11 10.1 100 0.19 10.2 97 0.18 10.3 96 0.15 10.3 96 0.27 10.2 98 
5 5 7.071 0.11 10.2 94          0.22 11.4 69 

Case F                 
0 0  0.10 10.0 101 0.19 10.0 101 0.18 10.0 101 0.16 10.1 100 0.26 10.0 102 
3 0  0.09 10.0 101 0.18 10.0 101 0.17 10.0 100 0.16 10.0 101 0.25 9.9 102 
5 0  0.09 10.0 101 0.18 9.9 101 0.18 9.9 101 0.16 10.0 101 0.25 9.8 102 
7 0  0.09 10.0 101          0.25 9.8 102 
0 3  0.09 10.0 100 0.18 10.1 99 0.17 10.1 100 0.15 10.1 99 0.25 10.1 100 
0 5  0.08 10.1 99 0.16 10.3 96 0.16 10.3 97 0.13 10.3 96 0.23 10.3 96 
0 7  0.08 10.2 97          0.19 11.0 79 
3 3  0.09 10.0 100 0.18 10.0 101 0.17 10.0 101 0.15 10.1 100 0.25 9.9 101 
5 5  0.08 10.0 100 0.17 10.1 100 0.16 10.1 99 0.14 10.1 99 0.24 10.0 100 
7 7  0.09 10.0 100          0.23 10.1 96 
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or when, in case E, both t and LS were large. 
It was verified (Table 1.3b) for distribution 2 (the only one examined to investigate this point) that the 

values of lm and cvlengths calculated using Eqs. (15) to (17), in which the terms c1, c2, and c3 are factored, 
were very close to the values calculated using Eqs. (10) to (12), in which the terms c1, c2, and c3 are 
calculated for each circle using Eqs. 1 to 3 in Table 1.1. 
 

Table 1.3b. Values of lm and cvlengths calculated either with the values of c1, c2, and c3 specific to each circle in Eqs. 

(10) – (12), or with c1, Dlm , c2, Dlm, and c3, Dlm in Eqs. (15) – (17). 

The case of distribution 2 is shown. For case F, only some values of t and LS are shown. 

 

  Case E Case F 

 t 0 3 0 3 5 0 3 3 5 5 

 LS 0 0 3 3 0 5 0 3 0 5 

lm from Eq. (10) 8.13 7.40 8.44 7.80 6.73 8.93 8.57 8.82 8.76 9.32 

lm from Eq. (15) 8.13 7.30 8.41 7.64 6.49 8.79 8.64 8.86 8.87 9.35 

cvlengths from Eq. (12) 0.34 0.37 0.29 0.31 0.40 0.23 0.32 0.28 0.30 0.22 

cvlengths from Eq. (17) 0.34 0.36 0.30 0.31 0.37 0.25 0.32 0.28 0.31 0.24 

 

3.3. Case of an almost infinitely long slice: effects of the number of circles and of t / D and LS / D 

 

The previous calculations for the five circle populations were repeated with either one hundred circles 
or one thousand circles, taking only the image of each circle possibly generated by a slice at a random 

distance from the circle center according to a Monte Carlo method. The distance was less than or equal to 
the radius of the largest circle minus t / 2 in case E or plus t / 2 in case F. The calculations were replicated 
ten times. The number of images varied between 28 and 92 (for one hundred circles) or between 89 and 

880 (for thousand circles), depending on the distribution, the values of LS and t, and the effects of 
replication. 

With one thousand circles, the values of cvD (obtained as the smaller root of Eq. (21)) and of Dm were 

very close to those previously calculated with slices equally spaced by small dx (Table 1.4 shows the data 
only for distribution 2). In only two simulations, which were performed using distribution 1 in case F, cvD 
was set equal to zero because ∆ was found to be negative. With only one hundred circles, for many of the 

simulations (23 of 90 in case E and 20 of 100 in case F with various values of t and LS), cvD was set to 0 
because ∆ was found to be negative, especially for distribution 1 which has the lowest coefficient of 
variation. For distributions 2, 3, 4, and 5, the numbers of such simulations were much smaller (6, 3, 9, and 

8 respectively of approximately 130 simulations performed for each distribution). The variability between 
replications was greater than that observed with one thousand circles. 

The number of circles nDmax as given by Eq. (13), with n L / A estimated from Eq. (20), was most 

often slightly underestimated when Dmax was estimated using Lmax (Table 1.4), but was close to 100 or 
1000 on average (data not shown) when Dmax was equal to its true value. 

 

3.4. Case of an almost infinitely long slice constituted by a set of slice portions: examples with real data 

and small numbers of images 
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Table 1.4. Values of cvD, Dm, and nDmax estimated by the proposed method from the simulated image lengths obtained according to a Monte Carlo method, drawing at 

random the distances of the bonbons to the slices, from an almost infinitely long slice. 

The case of distribution 2 (real values: cvD = 0.20; Dm = 10.0) which is shown in Fig. 5. Two circle sample sizes (100 and 1000 circles) and various arbitrary 

values of t and LS were considered. Each result is shown as the average and, between parentheses, the lowest and highest values of each variable obtained in ten 

replications. With 100 circles, there are one or two replications (one or two asterisks marked in the third column) where cvD was set equal to zero because it was 

estimated as negative. 

 

t LS  Number of images, m Estimated cvD Estimated Dm Estimated nDmax 

 100 circles 1000 circles 100 circles 1000 circles 100 circles 1000 circles 100 circles 1000 circles 

Case E         

0 0 * 68 (60–76) 600 (582–621) 0.21 (0.06–0.29) 0.21 (0.15–0.23) 9.8 (9.1–10.7) 9.9 (9.8–10.4) 99 (87–115) 931 (881–1002) 

3 0  57 (52–66) 533 (511–567) 0.17 (0.00–0.42) 0.23 (0.18–0.29) 10.3 (8.3–11.2) 10.0 (9.6–10.3) 83 (60–104) 928 (856–999) 

5 0  52 (43–64) 440 (421–456) 0.24 (0.16–0.33) 0.24 (0.19–0.29) 10.2 (9.1–11.0) 10.2 (9.8–10.8) 94 (62–133) 836 (694–990) 

0 3 * 62 (58–68) 585 (549–609) 0.17 (0.11–0.25) 0.18 (0.15–0.20) 10.1 (9.7–10.6) 10.2 (10.1–10.4) 88 (74–107) 930 (864–979) 

0 5  56 (50–64) 534 (517–554) 0.17 (0.09–0.21) 0.17 (0.16–0.18) 10.3 (9.7–11.2) 10.3 (10.0–10.5) 88 (75–102) 913 (870–959) 

3 3 ** 54 (46–61) 494 (475–518) 0.18 (0.04–0.28) 0.19 (0.17–0.21) 10.3 (9.3–11.3) 10.3 (10.1–10.7) 84 (69–102) 877 (783–971) 

Case F         

0 0 * 66 (59–74) 604 (575–632) 0.22 (0.09–0.33) 0.19 (0.15–0.22) 9.8 (9.5–10.5) 10.0 (9.7–10.3) 93 (78–101) 915 (873–1012) 

3 0  71 (66–78) 677 (657–700) 0.20 (0.00–0.33) 0.20 (0.18–0.22) 9.9 (8.5–10.7) 9.9 (9.7–10.1) 96 (83–109) 988 (943–1048) 

5 0 * 77 (69–82) 701 (671–739) 0.19 (0.07–0.29) 0.20 (0.18–0.23) 9.8 (8.6–10.6) 9.8 (9.6–10.0) 100 (83–112) 981 (955–1038) 

0 3  63 (58–68) 598 (567–624) 0.19 (0.13–0.24) 0.19 (0.16–0.21) 10.1 (9.6–10.7) 10.1 (9.9–10.2) 95 (84–102) 973 (943–1069) 

0 5  58 (54–64) 524 (487–546) 0.16 (0.11–0.19) 0.17 (0.16–0.18) 10.3 (9.8–10.8) 10.3 (10.2–10.4) 91 (77–100) 908 (840–991) 

3 3  67 (57–81) 657 (640–678) 0.20 (0.14–0.25) 0.19 (0.17–0.21) 9.9 (9.2–10.6) 9.9 (9.7–10.0) 97 (78–124) 982 (887–1019) 

5 5  66 (56–75) 639 (616–651) 0.16 (0.13–0.18) 0.18 (0.16–0.19) 10.1 (9.8–10.6) 10.1 (10.0–10.3) 94 (79–106) 962 (940–984) 
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Two populations of approximately spherical bonbons, white (WB) or yellow-orange (YB) (100 and 
150 bonbons respectively, measured with a caliper (Table 1.5)) were mixed, included in a semi-

transparent resin (Soloplast, GTS Pro type, France), and placed into a transparent tube of 52 mm internal 
diameter and 195 mm in length (Fig. 1.6). The smallest diameters of WB and YB were equal to 4.83 and 
7.44 mm respectively, and the largest were equal to 6.75 and 9.95 mm respectively (Fig. 1.7). Fischer’s 

coefficients of asymmetry (g1) of WB and YB (-0.43 and 0.31 respectively) were in the range of those of 
the five previously studied populations (as indicated in Fig. 1.5). It was suspected that the density of the 
bonbons was highly heterogeneous, varying both along and perpendicular to the cylinder axis. 

Evidently, because here Dmax was known, there was no need to estimate it by the dissector method. 
Logically, this would have given, for example in case F, no more than six successive slices 2 mm thick 
with an image of the same bonbon, and therefore the largest diameter would have been estimated to be 

smaller than 10 mm. Because the slices were made by sawing and thinned by turning, the distance 
between slices was constant, for convenience. Therefore, ten slices, 3.00 ± 0.01 mm thick and spaced 15 
mm apart, were made perpendicularly to the cylinder axis to enable systematic sampling along the 

cylinder axis, taking variability perpendicular to the cylinder axis into account and minimizing the edge 
surfaces which are poorly sampled (the two cylinder ends). The slices were then scanned (Fig. 1.6). The 
bonbon image diameters (case F) were obtained using the Image J software as the mean of the sides of a 

rectangle circumscribing the image. Then the slices were left in water until the bonbons dissolved, leaving 
spherical holes. The slices were then re-scanned (Fig. 1.6) and the hole image diameters (case E) were 
obtained as previously. The smallest image diameters of WB and YB were 1.36 and 1.98 mm respectively 

in case E and 2.13 and 1.91 mm in case F. The absence of smaller images was probably attributable to 
removal of small bonbon lumps by sawing and turning. The largest image diameters were 5.01 and 7.87 

mm in case E and 6.89 and 9.83 mm in case F for WB and YB respectively. As a result, (Lmax
2 + t2)

0.5
 – t 

and Lmax + t were smaller than the distance between the slice portions. Note that the slices were semi-
transparent and small enough to see whether bonbons were entirely overlapping; only two such cases 

among 118 images were observed. Because the distance of the bonbon centers from the cylinder wall was 
at least equal to their radius, the volume V in Eq. T2-16 was calculated as π (R – Dm / 2)2 (195 – Dm), R 

and 195 being the radius and length respectively of the resin cylinder, and SA was calculated as 10 π (R – 

Dm / 2)2, ten being the number of slices.  
Although the numbers of bonbon images were very small, especially in case E (Table 1.5), the 

proposed method was applied to the diameters of the bonbon images (case F) and the hole images (case 

E) of WB or YB with t equal to 3 mm and LS equal to the smallest image diameter. Table 1.5 shows the 
estimated values of cvD, Dm, and n. In case E for WB and in case F for WB and YB, the predicted values 
of cvD and Dm were higher than the observed values. Fig. 1.7 shows that the distributions predicted for 

WB and YB in case F from the estimated values of cvD and Dm, assuming normal distributions were 
larger. To examine whether the discrepancies between the estimated and real values could be due to 
random sampling variability of the circle diameters and of the distance of their centers to the slice 

portions, one hundred simulations were performed with a number nDmax of bonbons having their centers in 
an almost infinitely long region, Dmax ± t large, with surface area SA. The number nDmax was estimated 
(Table 1.5) using Eq. 13, with n equal to 150 and 100 for WB and YB respectively and L and A being 

replaced by SA and V respectively. The diameter of each bonbon was given by random sampling from the 

theoretical normal distribution defined by the real values of cvD and Dm, thus distinguishing nDmax classes. 
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Dmax was the diameter of the largest class. The distances of the bonbon centers to the slice midpoint were 
also obtained by random sampling between zero and Dmax / 2 ± t / 2. The mean values and the standard 

deviations of cvD and Dm calculated for the one hundred simulations (Table 1.5) indicated, at confidence 
levels higher than 95%, that the discrepancies could be due to random variability, because they were 
smaller than twice the standard deviation. The same was also observed for the predicted number of 

bonbons, except in case F for WB. In this case, the predicted numbers of bonbons and of images were less 
than the expected numbers by approximately five times the standard deviation. 

Simulations were also performed, according to a Monte Carlo method, drawing at random the 

distances of the bonbons to the slice, with various arbitrary values of nDmax, assuming cvD and Dm known, 
to determine the variability of the estimates of YB in cases E and F with respect to the number of images 
(Fig. 1.8). Such simulations can indicate the number of images which must be observed to estimate cvD 

and Dm with a given confidence level. For example, if only 33 images were observed in case F (Fig. 1.8), 
Dm would be estimated, at confidence level 95%, to be between 8.54 – 2 (0.49) = 7.56 and 8.54 + 2 (0.49) 
= 9.52, and similarly, cvD would be estimated, at this same confidence level, to be between 0.057 – 2 

(0.076) (effectively zero) and 0.057 + 2 (0.076) = 0.209. 

 

 
Fig. 1.6. Photos of bonbons from two mixed populations: WB (white with a small yellow stone visible in some cases) 
or YB (yellow-orange) included in a semi-transparent resin inside a tube (diameter = 52 mm; length = 195 mm); (a). 
Slices 3 mm thick were made, generating images belonging to case F (b) or, after dissolution of the bonbons, to case 
E (c). 

In case F, a rectangle drawn to estimate the diameter is shown. In case E, it seems that the lighting of some holes, 
such as those indicated by arrows, was not exactly perpendicular to the slice. 
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Fig. 1.7. Observed diameter 
distributions (heavy lines) of the 
two bonbon populations (WB and 
YB) and their predicted 
distributions based on the mean 
diameter and the coefficient of 
variation of the diameter as 
estimated by the proposed 
method from images obtained in 
case F using slices 3 mm thick, 
assuming normal distributions 
(fine lines). Fisher’s coefficients 
of asymmetry (g1) and skewness 
(g2) are (-0.43; 0.72) and (0.31; -
0.33) for WB and YB 
respectively. 

 

 

 
Fig. 1.8. Means of Dm (heavy 
line) and cvD (dotted line) with 
respect to the mean number of 
images obtained in one hundred 
simulations performed with the 
number nDmax of bonbons equal 
to 10, 20, 36, 68, and 100. The 
delimiting vertical and horizontal 
lines show the observed standard 
deviations. The case of bonbon 
population YB in cases E and F 
is shown. 
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Table 1.5. Application of the method to images of two populations of yellow-orange (YB) or white (WB) bonbons 

from slices 3 mm thick. 

Additional parameters are indicated for YB to show the sequence of calculations. The values of the mean and 

standard deviation (between parentheses) were calculated from one hundred simulations according to a Monte Carlo 

method, drawing at random the distances of the bonbons to the slices, with the real values of cvD and Dm and with 

nDmax equal to 36 and 68 for YB for cases E and F respectively, and to 31 and 78 for WB in cases E and F 

respectively. 

 
 Real values Estimated values Values from 100 simulations 

  case E case F case E case F case E case F 

        
YB        

mDmax, one  32 64   29.0 (2.4) 60.9 (2.5) 

lm (mm)  6.30 7.24     

cvlengths  0.211 0.264     

LS (mm)  1.983 1.908     

lm / Dlm     0.710 0.860   

cvL, Dlm    0.267 0.225   

cvD 0.055   0.001* 0.139 0.064 (0.075) 0.050 (0.060) 

Dm (mm) 8.45   8.91 8.31 8.42 (0.46) 8.56 (0.35) 

βDm    0.224 0.232   

γDm    1.227 1.201   

n 100   105 108 101.4 (12) 98.1 (6.2) 

        

WB        

mDmax, one  22 54   23.3 (2.4) 68.7 (2.7) 

cvD 0.060   0.233 0.114 0.075 (0.081) 0.040 (0.049) 

Dm (mm) 5.91   5.32 5.98 5.86 (0.33) 5.98 (0.17) 

n 150   194 119 155.2 (26.6) 150.7 (6.9) 

* Value assigned to assess Dm because cvD
2 was calculated as negative. 

 
4. Discussion 
 

The method proposed here is based largely on Eq. (21), which assumes that the diameter distribution 
is perfectly or roughly symmetrical. It links the coefficients of variation of the circle diameters, of the 
image lengths, and of the lengths of the images of a virtual circle having as its mean image length the 
same value as the mean length of the images of the circles. This equation assumes that the parameters c1, 
c2, and c3 can be factored in Eqs. (10) and (12) without significant error. This was found to be an 
acceptable approach when D / t and D / LS are large enough (Table 1.3b) because these parameters are 
almost constant in these cases (Fig. 1.4). Moreover, because for symmetrical diameter distributions, the 
number of circles smaller than Dm is equal to the number of circles larger than Dm, compensations occur 
between the deviations introduced for each of the circles smaller than Dm by factoring c1,Dlm or c1,Dm, 
c2,Dlm, and c3,Dlm and those introduced for the circles larger than Dm. In case E, these compensations are 
likely smaller when D / t and D / LS are small because they vary rapidly (Fig. 1.4). The proposed method 
requires selection of one of the two roots of Eq. (21). In most of the examples previously described, the 
smaller root was selected. In the set s1 of only three circles, the larger root was selected. This case is 
likely to occur only when the variability of the diameter is very large relatively to that of the image 
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length. The selection can be made based on the predicted longest image or on the number of circles. In 
cases where ∆ and cvD are negative, they can be set equal to zero, although this entails lower accuracy. In 
cases where neither the smaller nor the larger root can be selected, for example in set s1 with a very small 
number of chords (15), the number of images must be increased. 

The method was found to be applicable even to fairly small image samples (several dozen images) in 
the case of slices equally spaced by small dx. In the case of an almost infinitely long slice, accurate 
estimates were still obtained for fairly small image samples (Table 1.4). This likely occurred because Eq. 
(21) involves only the coefficients of variation. The coefficient of variation of a variable often varies only 
slightly between small samples from a single population, even if the mean and the standard deviation 
vary, because these statistics vary largely in the same way (Dagnélie, 1973). Evidently, accuracy was 
lower with smaller samples or more approximate measures. With very small samples, ∆ and cvD could not 
even be calculated in some cases, but still, by setting them equal to zero, the method could provide 
approximate estimates of the mean diameter and of the number of particles. 

The examples with bonbons largely confirmed the previous results, although there were some 
discrepancies between the estimated and real values. Most of these discrepancies could be explained by 
random variability because they were in the ranges expected from one hundred simulations made with 
sets of random diameters and random distances of the bonbons to the slice midpoint. The discrepancies in 
Dm and cvD were greater in case E, probably because the numbers of images were smaller than in case F. 
However, a part of these discrepancies could be due to various approximations. The bonbons were not 
exactly spherical, and measurements of image diameters were therefore likely approximate: in case E, 
some of the images showed shaded zones because the lighting was not exactly perpendicular to the slices 
(Fig. 1.6c); in case F, some image contours were not very clear due to light diffusion and diffraction (Fig. 
1.6c). In spite of these discrepancies, the estimates provided information about the Dm and cvD of the two 
populations, as shown in case F (Fig. 1.7), which would likely prove useful. However, in case F for WB, 
the number of bonbons was greatly underestimated. This was likely due to underestimation of the 
observed number of images. Most probably, the slice portions were not sufficiently representative of the 
large-scale spatial variability of bonbon density. Fig. 1.8 provides some indication of the number of 
images which would have to be obtained to achieve a given level of precision. Here, the number of 
images was limited by the minimal distance, Dmax ± t, between slice portions and by the direction of the 
slices, which was chosen to take heterogeneities in the cylinder axial direction into account. It was 
assumed that spatial variability along the axis was not related to any periodic variable harmonized with 
the distance between slices, which was not random, but constant. 

If the diameter distribution, which is not generally known, is not perfectly or approximately 
symmetrical, the method will provide estimates of Dm and cvD, the latter being possibly set equal to zero, 
but these might be very far from the true values. In this case, the image-length distributions calculated for 
a sample of circles assuming successively different types of diameter distribution (for example, a normal 
distribution) with the estimated values of cvD

2 and Dm will not be very close to the observed image-length 
distribution. Therefore, it is important to verify that the image-length distribution predicted by these 
estimates is in agreement with the observed image length distribution. This is easy to check if the 
distribution is normal. 

Certainly the proposed method provides estimates which do not converge exactly to the true values 
when the number of images is infinitely large, especially when t and LS are nonzero because of the 
approximations made when c1, c2, and c3 are factored to give Eqs. (15) to (20). However, both bias and 
estimate variability seem to be small enough to provide useful information with only a few dozen images.  

It is important not to forget that the proposed method must be used with caution, especially if 
diameters are smaller than t or when images overlap. Suggestions have already been provided as to how 
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to overcome the first limitation, whereas the example with the bonbons, where only two images among 
118 were found to overlap, suggested a low probability of completely overlapping images in a slice where 
the particles are widely enough dispersed (the ratio of bonbon volume to the total volume of resin and 
bonbons was 0.11). In the case of partly overlapping sphere images, or lobed images, it is possible to infer 
the circle diameters from their visible lobed parts. 
 
5. Conclusions 
 

The proposed method provides estimates of the number n of objects and of the mean, Dm, and the 
coefficient of variation, cvD, of their diameters when the diameter distribution is symmetrical or 
approximately symmetrical. It works even with a small number of images, although cvD may not be 
estimated if the number of images is very small. Evidently, the estimates are more precise on average 
when the spatial distribution of the objects in the volume is more homogeneous and when the number of 
slices and the number of objects are larger, or when the image-detection limit is lower, leading to a larger 
number of images. The accuracy depends also on the slice thickness and on the underlying distributions. 
In the simulated and real examples presented here, valuable predictions were obtained with several tens of 
images. Simulations can provide indications of the number of images which have to be obtained to 
achieve a given accuracy level. 

The proposed method, which is based both on a geometric model and on a sampling design, and which 
is easily applicable using Table 1.2, will likely be very useful in many fields, especially for 
approximations when only a small number of images (evidently not too small) is available and when the 
distribution is approximately normal. 

In a number of cases, the diameter distribution is not of a simple type or is not perfectly or 
approximately symmetrical, or the objects are not perfect circles, cylinders, or spheres. The present 
method plays a large part in methods under development for any diameter distribution or for only 
approximately circular objects with an equivalent diameter which can be estimated. These methods will 
play a role in further research to estimate the size of phloem pores. 
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Annex 
 

When the distribution of a variable is symmetrical, the third central moment (relative to the mean 
diameter) is nil. Based on the relation which exists between this moment and the three first moments 
relative to the origin (Dagnélie, 1973), it follows that: 

(D3)m = 3 Dm (D2)m – 2 Dm
3                                                                                               (24) 
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Therefore, by letting cvD represent the coefficient of variation of the diameter, Eq. (18) yields Eq. 
(21), after multiplying the numerator and the denominator by Dm and noting that 3 cvD

2 + 1 is equal to 3 
(cvL, Dlm

2 + 1) – 2. 
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CHAPTER 2 

 

Estimating the numbers and diameters of objects from their 

images in slices: case of any diameter distribution treated as a 

set of symmetrical distributions  

 

Abstract 
 

A method has been recently proposed to estimate the numbers and the diameter distributions of 
circular, cylindrical, or spherical objects included in a matrix from their images generated by slices when 

the diameter distribution is perfectly or approximately symmetrical. Here a method is proposed for any 
distributions. The object population is considered to be composed of various populations in juxtaposed 
size classes, each with a perfectly or approximately symmetrical diameter distribution. These size classes, 

called macro-classes as composed of smaller classes, are defined so that the largest images of the objects 
of a single population fall into a single macro-class. The mean and coefficient of variation of the 
diameters in the population of the largest objects are estimated from those of the image lengths in the 

largest macro-class using the recently developed method for symmetrical distributions. For that, the lower 
image-detection limit is set equal to the lower limit of the macro-class. The same calculations are 
performed successively for each population of smaller objects, the number of images in each size class 

being estimated by the observed number of images minus the numbers of images generated by the 
populations of larger objects calculated assuming their diameter distributions to be normal. The 
calculations are formulated in a spreadsheet available online. Valuable predictions were obtained for both 

simulated and real examples. 
 

1. Introduction 
 

Estimation of the numbers and diameter distributions of circular, cylindrical, or spherical objects 
included in a matrix from their images obtained by slices has been the purpose of many research studies, a 

great number of these originating in microscopy. Most of these are cited in the references of Weibel 
(1980), Cruz-Orive (1983), Stoyan et al. (1995), and Baddeley and Jensen (2005). This problem has been 
recently reconsidered (see Chapter 1) from a general viewpoint, including the cases of both opaque and 

transparent objects, of possible image-detection limit, and of thick slices (which are less thick than the 
smallest circle diameters), but only for perfectly or approximately symmetrical diameter distributions. 

However, in many cases, the diameter distribution is not perfectly or even approximately symmetrical. 

It can be strongly unbalanced either on the right or on the left, or highly irregular with several local 
frequency maxima. It is important to be able to estimate the diameter distribution in such cases, especially 
because it may reveal different object populations. Kim et al. (2000) proposed a method for this problem 

based on subdividing the population of the images in sets which contain normal deflections in the 
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distribution. Here, this approach is used in a new method applicable to any diameter distributions which is 
based largely on the relations and the method developed for symmetrical distributions (see Chapter 1). 

These are briefly presented hereafter. 
First, the case of circles on a plane is initially considered because the cases of spheres or cylinders are 

then easily derived from it. Assuming therefore a circle of diameter D on a plane and a slice of thickness t 

perpendicular to the plane at a distance x from the circle center, two cases of images of the possible 
intersection between the circle and the slice, which is a circle segment, were considered. In one case, the 
circle is more transparent than the slice matrix (Fig. 2.1a) and the image length is L1 (case E), and in the 

other case, it is more opaque than the slice matrix and the image length is L2 (case F). However, no image 
is obtained if the image length is shorter than the image-detection limit LS. Assuming circles with possibly 
different diameters randomly positioned in a part of the plane with area A, images of these circles are 

generated using a set of slices perpendicular to the plane and equally spaced by a very small distance dx 
relative to the smallest diameter. When only one almost infinitely long slice of length L sections the 

plane, only a certain number of these circles yields an image. Similar to this latter case is the case of a set 

of slice portions distant from each other by a value greater than Dmax ± t (minus sign in case E and plus 
sign in case F), Dmax being the diameter of a fairly large circle of the population. In all these cases, when 
the diameter distribution is perfectly or approximately symmetrical, the mean Dm and coefficient of 

variation cvD of the circle diameters as well as the number n of circles can be estimated from the number 
of images and the mean lm and coefficient of variation cvlength of their lengths which fall into the size 
classes greater than LS, using equations which are described in the Annex. Also, in the cases of circles in 

different planes or of spheres or cylinders, the previous estimates can be derived from these equations by 
replacing L and A by SA and V respectively, SA being the area of the slice which sections the volume V 

which contains the n circles. 

 

 
Fig. 2.1. . Circle of diameter D cut by a slice of thickness t. 

(a) If the circle is transparent relative to the slice (the case shown in the figure), the image length is L1; if the 
circle is opaque relative to the slice, the image length is L2. An image smaller than LS cannot be observed. (b) When 
the middle of the slice passes through the circle center, the angles β and γ are equal to asin(LS / D) and acos (t / D) 
respectively. 
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2. Proposed Method 
 

As for the case of symmetrical distributions, consider the case of images of circles in a part of a plane 
with area A. The cases of cylinders or spheres are easily derived from this case when the images of the 

spheres are diameters of circular sections observed on planes which section the spheres, or when the 

images of the cylinders are chords of cylinder cross-sections on planes parallel to the cylinder axis which 
section the cylinders. 

Consider images of these circles which are obtained either from a set of slices of thickness t and 

equally spaced by a very small distance dx or from only one almost infinitely long slice of thickness t. 
When a set of slice portions is considered in this latter case, the slice portions must be chosen at random 
in the area A, but must be distant from each other by more than Dmax, max ± t (minus sign in case E and plus 

sign in case F), Dmax, max being the diameter of one fairly large circle of the population. Because the 
diameters are unknown, Dmax, max must be evaluated based on previous knowledge, for example from the 
longest image length, Lmax, observed in a preliminary slice sample which estimates the diameter by (Lmax

2 

+ t2)0.5 in case E or Lmax in case F. Then it is necessary to verify a posteriori that the distance between 
slices is greater than (Lmax

2 + t2)0.5- t in case E or Lmax + t in case F. 
Assume that i) the images of two or several circles obtained by a slice do not overlap in case F (this is 

not possible in case E), ii) only images longer than LS (possibly equal to zero) can be measured, and iii) 
the circle diameters are not smaller than the largest of t or LS in case F or (LS

2 + t2)0.5 in case E. 
The method proposed to estimate the number of circles and the diameter distribution is as follows. 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
Fig. 2.2. Variations in the cumulative frequency and the frequency per class of the lengths of the images of two 
circles with different diameters (5 and 10 mm) generated by equally spaced slices, t and LS being 3 and 1 mm 
respectively. Cases E and F are shown. 

The slices are equally spaced by 0.0072 and 0.03 mm in cases E and F respectively, values chosen for the same 
number (131) of images of the larger circle in the two cases E and F. There are 581 and 215 images of the circle of 
diameter 10 mm in cases E and F respectively, distributed into one hundred classes. With smaller numbers of images, 
the curves were more irregular. With larger classes, the curves are smoother, but the variations around 4 or 5 mm 
were reduced. 
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First, the images are arranged into image length classes which are grouped into larger classes named 
macro-classes (labeled C1, C2, … Ci, …, CP in descending order of size). Each macro-class Ci is defined 

to contain the largest image of each circle of the population Pi (i varying from 1 to P) in which the 
diameter distribution can be approximated by a symmetrical distribution. Because this population also 
generates images in all the smaller macro-classes, each macro-class (except the largest) contains also 

images of circles which generate their largest images in one or several larger macro-classes. When the 
frequency varies slowly with the image length, equally large arbitrary macro-classes can be created. 
When it varies suddenly, the macro-classes are defined in agreement with the observed image length 

variations. A basis for this definition is provided by the fact that the frequency of the images generated by 
a circle is lower in classes of shorter images (Fig. 2.2). Thus, a higher image frequency in a smaller class 
with upper limit λ reveals the existence of circles having diameters in this class, in case F, or in a class 

with upper limit (λ2 + t2)0.5, in case E. In case F, because all the circles of which the center is at a shorter 
than t / 2 from the slice midpoint generate images with length equal to the diameter D, the image 
frequency in the class which contains D is high when t is large. Therefore, the upper limit of a macro-

class can be identified as the lower limit of a class in which the image frequency is locally minimal. 
Evidently, minimal values suspected to be due to random variability should be neglected. Each circle 
population must be sufficiently large so that each macro-class Ci contains sufficiently large samples of 

images of all the populations of larger circles. With a sufficiently large image sample, large numbers of 
macro-classes and classes per macro-class are preferred if the frequency varies suddenly with image 
length, whereas with a small sample, these numbers are limited. At a given frequency, more macro-

classes must be created for the larger image sizes because the number of images generated by larger 
circles is greater. 

As a first step, LS is set equal to the lower limit of C1. From the m1 images of C1, the mean (Dm,1) and 

coefficient of variation (cvD,1
2) of the diameters of P1 are estimated by the method proposed for 

symmetrical diameter distributions. Then a sample of circles - for example, 100 circles - is taken from the 
normal distribution defined by cvD,1 and Dm,1. The image frequencies for this sample in each of the 

smaller classes are calculated as described in Chap. 1, and the numbers of images are calculated from 
these frequencies and the numbers of images m1. The total number mDmax, 1 (case of slices equally spaced 
by dx) or mDmax, one, 1 (case of one almost infinitely long slice) of images expected to be generated by P1 is 

equal to m1 plus the numbers of images in the previously calculated smaller classes. 
As a second step, LS is set equal to the lower limit of C2. In each class of C2, the number of images m2 

generated by circles of P2 is calculated as the observed number of images minus the previously calculated 

number of images generated by P1. From the lengths of the m2 images in all the classes of C2, the values 
of cvD, 2 and Dm, 2 of P2 are estimated as for C1. Then, also as for C1, the numbers of images generated by 
the circles in each smaller class are calculated, as well as the number mDmax, 2 or mDmax, one, 2. 

In subsequent steps, similar calculations are carried out for each macro-class, taking the images 
generated by the circles of all the larger macro-classes into account. 

Because of the random variability of the diameters and of the distances between slices and circles, the 

observed numbers of images in some classes of Ci may be less than the sum of the calculated numbers of 
images of the circles of the populations P1 …Pi–1 in this class. Therefore, the estimated number of images 
generated by circles of Pi in these classes may be negative. Such cases are acceptable because it is 

expected, on average, that the observed numbers of images in neighboring classes may be overestimated. 
However, it may be better to create larger classes, each with greater numbers of images.  
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The numbers ni of circles are calculated using Eqs. 17 or 18 in Table 2.1 according to the images are 
obtained from slices equally spaced by small dx or from almost infinitely long slice. In both cases, the 
proportion Gi of circles of each population Pi among all the circles, the total number of circles N and the 
mean Dm and coefficient of variation CVD of the diameters are obtained using Eqs. 19 and 22 in Table 2. 

1. 

This method with its calculations is formulated in the file ‘diameters-slices.xls’ (which is online freely 
on the website http://www.diameters-slices.org) which can function either with individual images (up to 
10,000) or with image classes (up to 100). An alarm message is displayed if the observed number of 

images in any macro-class is less than that calculated from the populations of larger circles. This indicates 
that the image sample is too small and that the number of macro-classes must be decreased. Fig. 2.3 
shows the main sheet of this file. 

 
Table 2.1. Equations for estimating the number and the diameter distribution of circles in a population with any 

distribution composed of a mixture of P populations, each with a perfectly or approximately symmetrical diameter 

distribution. 

Note that the numbers of some equations follow those of Table 2 in Chap. 1. 

The sign ∑ indicates the sum over all populations, with i varying from 1 to P. 
 
 Eqs. 

Case of slices equally spaced by small dx  
ni = mi / q c1, Dm, i Dm, i T2-17 

Case of one almost infinitely long slice  

ni = 
case of a surface:                           mDmax, one, i A / L c1, Dm, i Dm, i 
case of a volume:                          mDmax, one, i V / SA c1, Dm, i Dm, i i  

T2-18 

Both cases  
N =  ∑ ni T2-19 

Gi = ni / N T2-20 
Dm = ∑ (Gi Dm, i) T2-21 
CVD

2 =                                      ∑{Gi Dm, i
2 (1 + cvD, i

2)} / Dm
2– 1        with ∑Gi = 1 T2-22 

 

3. Validation of the proposed method with examples 
 

The online file ‘diameters-slices.xls’ was used for the following examples. 
 

3.1. Examples from Wicksell (1925) where both the diameter distribution and the image distribution 

are exactly theoretically known, t and LS are equal to zero, and the objects are opaque 

 
The method was applied to the two examples numbered 1 and 3 by Wicksell (1925), in which both the 

diameter distribution and the image distribution are exactly theoretically known and the diameter 
distribution is either almost symmetrical (Example 1) or highly asymmetrical (Example 3). The classes of 
images which were considered by Wicksell in Examples 1 and 3 (Fig. 2.4) were arranged into eight 

macro-classes with limits 15.5, 13.5, 11.5, …, 3.5, 1.5, and 0 or 13.5, 11.5, 9.5, …, 3.5, 1.5, 0.5, and 0 in 
Examples 1 and 3 respectively. The estimated values of Dm (6.27 and 2.11 respectively) were almost 

equal to the theoretical values (6.27 and 2.12) and were closer to the theoretical values than the values 
found by Wicksell (6.22 and 2.01). In Example 1, Dm was closer to the theoretical value than the value  
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(6.11) found by the method for symmetrical distributions, which was also tried. The estimated values of 

CVD (0.51 and 0.88 respectively) were almost equal to the theoretical values (0.50 and 0.86). Moreover, in 

Example 3, which was highly asymmetrical, 54 equally wide image subclasses were defined. With this 
number of classes (the number of classes is theoretically unlimited) and the eight previously defined 
macro-classes, the estimated diameter distribution was fairly smooth and very close to the theoretical 
distribution (Fig. 2.4), with Dm and CVD being 2.14 and 0.87 respectively 

. 
 

 

 

Fig. 2.4. Application of the 
proposed method to Example 3 
from Wicksell (1925).  
In the inset figure, the vertical 
dotted lines show the macro-
class limits. The image 
frequencies per subclass are 
indicated at the subclass 
midpoints by squares. The 
cross symbols show the limits 
of the 54 subclasses which 
were created. 
 

 

3.2. Examples with slices equally spaced by small dx, t and LS possibly >0, and opaque or transparent 

objects 

 

An artificial population of one hundred circles was created with an asymmetrical diameter distribution 
(Fig. 2.5), with 27%, 30%, and 43% of the circles taken from normal populations with means and 
standard deviations of 13.30 µm and 0.117, 8.99 µm and 0.0007, and 7.97 µm and 0.055 respectively. 

The mean and the coefficient of variation of the diameter were 9.71 µm and 0.246 respectively. The 
chosen values of t and LS were 4 and 6 µm respectively.  

The circles were first assumed to be opaque in a transparent matrix (case F). Using slices spaced by 

one-hundredth of the radius of the largest circle plus t / 2 resulted in 5980 virtual images. The image 
lengths were regarded as being measured and grouped into 47 subclasses 0.2 µm wide (Fig. 2.5a). The 
method was first used to create three macro-classes (C1, C2, and C3, with limits of 15.4 and 9.0, 9.0 and 

8.6, and 8.6 and 6 µm respectively) based on variations in image frequency (Fig. 2.5a and Table 2. 2). 
The estimated diameter distribution was very close to the real diameter distribution (Fig. 2.5a), with CVD 
and Dm being 0.244 and 9.71 µm respectively and the estimated percentages of the three circle 

populations 1, 2, and 3 being 26.4%, 34.3%, and 39.2% respectively. The estimated number of circles was 
100.8. The distribution of calculated image lengths generated by this circle population was very close to 
the true distribution (Fig. 2.5a). 

However, there were some discrepancies for the largest circles. Therefore, another set of eight macro-
classes was created, of which four covered the largest sizes, neglecting one of the two principal minima of 
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Fig. 2.5. Application of the 
proposed method to a mixture of 
populations of opaque (a, b, and c) 
and transparent (d) circles: 

(a) Three macro-classes were 
created based on the two principal 
minima of the image frequency per 
image length class. Table 2.2 gives 
details of the calculations. (b) Eight 
macro-classes were created, 
neglecting one of the two principal 
minima of the image frequency. (c) 
and (d) Eight macro-classes were 
created, three of them based on the 
two principal minima of the image 
frequency per image length class. 

Main figures: Estimated 
diameter distribution: heavy lines. 
Image lengths: cross symbols in the 
main figures. Distribution of the 
image length calculated for one 
hundred circles having the 
estimated diameter distribution: 
fine line close to the cross symbols. 
Real diameter distribution: fine 
dotted lines. 

Inset figures: image frequency 
per length subclass indicated at the 
subclass midpoints by squares and 
at the limits of the one hundred 
subclasses, which were indicated by 
crosses. The vertical dotted lines 
show the macro-class limits.  
 

 

the image frequency (Fig. 2.5b). The discrepancies were greatly reduced, but there were still some 
discrepancies around 8–9 µm. Finally, the best fit was obtained when the eight macro-classes were 
defined to include the two principal minima of the image frequency, the limits being 9–8.6 and 8.6–7 

rather than 9–8 and 8–7 (Fig. 2.5c). 
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Table 2.2. Application of the proposed method to calculated image lengths of a population of opaque circles in a 

transparent matrix (case F). 

Based on the principal minima of the image frequency per length subclass (Fig. 2.5a), three macro-classes C1, 

C2, and C3 of images of three populations P1, P2, and P3 were distinguished, defined by the limits 15.4–9.0 µm, 9.0–

8.6 µm, and 8.6–6 µm respectively. LS was first set equal to 9.0 µm. The mean lm and the coefficient of variation 

cvlengths of the lengths of the m1 (1919) images of all the subclasses of C1 were calculated (bottom part of table), the 

mean image length in a subclass being the mean of its upper and lower values. From lm, LS, and t, the diameter Dlm 

was estimated to be 0.930. Using the equations in the Appendix, the mean Dm,1 and the coefficient of variation cvD,1 of 

the diameters of the circles of P1 were estimated (bottom part of table). Using a sample of one hundred circles having 

the normal diameter distribution defined by cvD,1 and Dm,1, sectioned by one hundred equally spaced slices, the 

proportions and the numbers of images obtained in C1 and in each subclass smaller than 9.0 µm were calculated 

(columns c and d). Then LS was set equal to 8.6 µm. In each image subclass of C2, the number of images (column e) 

generated by circles which generated no image in C1 was calculated to be equal to the observed number of images 

(column b) minus the previously calculated number of images generated (legend continues on the following page)  
 

Length classes (µm) Observed 
images 

Images estimated to be generated by circles which have:  

  

the normal distribution 
defined by the estimated 
values of  cvD,1 and Dm,1 

indicated at the bottom of 
this table  

do not 
generate 
images in 

C1 

the normal distribution 
defined by the estimated 
values of  cvD,2 and Dm,2 

indicated at the bottom of 
this table 

do not 
generate 
images in 
either C1 

or C2 
 Number Frequency Number Number Frequency Number Number 

(a) (b) (c) (d) = (c) x 
1919 / 0.776 

(e) = (b) 
– (d) 

(f) 
(g) = (c) x 
1141.5 / 
0.494 

(h) = (b) – 
(d) – (g) 

macro-class C1        
15.4 – 15.2 31       

15.2 – 15.0 69       

…… ……       

9.2 – 9.0 28       

9....0 < total < 15....4 1919 0....776      

        

macro-class C2        

9.0 – 8.8 975 0.011 26.42 948 .6    

8.8 – 8.6 217 0.010 24.09 192 .9    

8.6  < total  < 9.0    1141.5 0.494   

        

macro-class C3        

8.6 – 8.4 266 0.10 23.80  0.049 113.43 128.76 

8.4 – 8.2 279 0.09 23.22  0.039 90.56 165.22 

…… …… …… ……  …… …… …… 

6.2 – 6.0 97 0.06 14.22  0.011 24.72 58.06 

6....0  < total  < 8....6       1869....8 

Parameters estimated from the numbers of images of P1 observed in the classes of the macro-class C1 (column b) or 
of images of P2 or P3 estimated in the classes of the macro-classes C2 or C3 (columns e and h). 

  lm (µm) cvlengths cvD Dm (µm)   

population P1  12.550 0.136 0.091 13.430   
population P2  8.866 0.008 0.001 8.910   

population P3  7.581 0.082 0.046 7.898   
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by the circles of P1 (column d). The mean lm and the coefficient of variation cvlengths of the lengths of the m2 (1141.5; 

column e) images obtained in all the subclasses were calculated (bottom part of table). Using the equations in the 

Appendix, cvD,2 and Dm,2 were estimated (bottom part of table). Finally, LS was set equal to 6 µm. In each image 

subclass of C3, the number of images (column h) generated by circles which generated no image in either C1 or C2 

was calculated to be equal to the observed number of images (column b) minus the previously calculated numbers of 

images generated by the circles of P1 and P2 (columns d and g). The mean lm and the coefficient of variation cvlengths 

of the lengths of the m3 (1869.8; column h) images obtained in all the subclasses were calculated (bottom part of 

table). Using the equations in the Appendix, cvD,3 and Dm,3 were estimated (bottom part of table). The percentages of 

the three populations of circles P1, P2, and P3 were calculated as 26.5%, 34.3%, and 39.2% respectively. The 

diameter distribution of a sample of one hundred circles taken from this total population is shown in Fig. 2.5a, which 

shows also the distribution of the calculated lengths of the images generated by this circle population. 

 

Then the circles were assumed to be transparent in an opaque matrix (case E). In this case, 3089 

images were obtained. The method for case E was used. Based on the principal minima of the image 
frequency for each length class (Fig. 2.5d), eight macro-classes were defined taking into account the two 
principal minima of the image frequency, 8.2 and 7.4. The estimated diameter distribution was fairly 
close to the real diameter distribution (CVD and Dm were equal to 0.235 and 9.99 µm respectively), but the 

frequencies in the classes smaller than 9 mm were underestimated. The estimated number of circles was 
107. Differences similar (not shown) to those indicated for case F were obtained with three or eight 

different macro-classes. 
 

3.3. Cases of an almost infinitely long slice or slices spaced by more than Dmax,max ± t 
 

3.3.1. Example with simulated data in cases E and F 
 

The method was applied to the previous example of the population of one hundred circles, taking only 
the image of each circle possibly generated by a slice with its midpoint at a random distance from the 
circle center, which was less than or equal to the radius of the largest circle minus t / 2 in case E or plus t / 

2 in case F. The calculations were replicated ten times according to a Monte Carlo design. The number of 
images varied between 25 and 38 in case E and between 52 and 90 in case F. Only images longer than 6 
µm were considered, and the value of LS was set equal to the length of the smallest image. Three macro-

classes were almost always distinguished (results not shown but close to those shown in Fig. 2.5a). In 
case E, CVD varied between 0.21 and 0.27 (mean = 0.24; sd = 0.02), and Dm varied between 9.20 and 
10.88 (mean 10.00; sd = 0.50). In case F, CVD varied between 0.21 and 0.27 (mean = 0.23; sd = 0.02), and 

Dm varied between 9.38 and 10.02 (mean 9.75; sd = 0.22). 

 
3.3.2. Example with real circular coins in case F 

 
The method was applied to a mixture of three populations of coins: 17, 20, and 8 coins of 1, 2, and 5 

centimes of euros respectively, thus 38%, 44%, and 18% of the total coin population, with diameters of 

16.19,, 18.73 and 21.22 mm respectively. The mean and coefficient of variation of the diameters of the 45 
coins were 18.21 mm and 0.100. Each coin was placed randomly on a scanner and scanned five times, 
with the coin’s position on the scanner varied randomly each time. In this way, 225 coin scans were 

obtained, spread out over five photos 204 mm wide and 297 mm long. 
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On each photo (Fig. 2.6), seven slices 204 mm long and 5 mm thick were drawn, the slices being 
 

 
 

 
 
Fig. 2.6. Photo showing a mixture of three populations of coins (8, 20, and 17 coins of 5, 2, and 1 euros) and their 
intersections with slices 5 mm thick, perpendicular to the coins and having for sections the strips shown on the plane. 
The image lengths were those of the longest coin sections into the slices, neglecting shadows around the coins. 

 

 
 
Fig. 2.7. Application of the proposed method to images of a mixture of three populations of coins, obtained using 
slices 5 mm thick. 

In the inset figure, the vertical dotted lines show the macro-class limits; the image frequencies per subclass are 
indicated at the subclass midpoints by squares; the cross symbols show the limits of the one hundred subclasses 
which were created. 
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parallel and spaced by at least 30 mm. The longest side of each coin section present in a slice was 
measured and considered to be an image of the coin. The shortest and longest of the 125 images obtained 

were 2.05 and 21.20 mm long. Thus, Lmax + t was less than the distance between slices. 
The values of t and LS were set equal to 5 mm and 2 mm respectively. Based on the principal 

variations of the cumulative image frequency and of the frequency per class (Fig. 2.7), three macro-

classes were created, defined by the values 19.3 and 16.6 mm. The estimated diameter distribution (Fig. 
2.7) indicated clearly three circle populations with mean diameters of 20.87, 18.79, and 16.58 mm, 
containing respectively 16%, 45%, and 39% of the total number of coins, which was estimated to be equal 
to 229. Dm and CVD were 18.24 mm and 0.084 respectively. These estimates generally agreed with the 

real data. 
 

3.3.3. Example with real spherical bonbons in cases E and F. 
 

The two populations of bonbon images previously studied (Chapter 1) were considered together. 

Briefly, two populations of approximately spherical bonbons, white (WB) or yellow-orange (YB), 
consisting of 100 and 150 bonbons respectively, which had been measured using a caliper (Table 2. 3 
and Fig. 2.8), were mixed and included in a semi-transparent resin placed in a transparent tube (52 mm 

internal diameter) 195 mm in length. Slices 3.00 ± 0.01 mm in thickness, spaced by 15 mm, were made 
perpendicular to the cylinder axis. The slices were then scanned, and the bonbon image diameters (case F) 
were obtained using the Image J software. Then the slices were left in water until the bonbons dissolved, 

leaving spherical holes. The slices were then rescanned and the hole image diameters (case E) were 
obtained as before. There were 118 and 54 images in cases E and F respectively. The largest image 
diameters as measured were 7.87 mm in case E and 9.83 mm in case F. Therefore, (Lmax

2 + t2)0.5 - t and 

Lmax + t were less than the distance between the slice portions. The smallest image diameters as measured 
were 1.36 mm in case E and 1.91 mm in case F. The value of t was set equal to 3 mm, and LS was set 
equal to the smallest image diameter. 

In case F, two macro-classes were first distinguished, separated by a limiting value of 6.45 mm and 
therefore including the peak between 6.5 and 7 mm in the greatest macro-class (Fig. 2.8a). Dm, CVD, and 
N were close to their true values (Table 2.3). The mean diameters of the two populations P1 and P2 were 

close to the true values, but the coefficients of variation of the diameter were greater and the number of 
bonbons in P2 was less than that of WB (Table 2.3). The calculated image length distribution was fairly 
close to the observed distribution (not shown). With three macro-classes, a small population appeared 

between the two others (Fig. 2.8a and Table 2.3). When two macro-classes were distinguished by a 
limiting value of 6.90 mm, the results were only slightly changed. 

In case E, two macro-classes were also distinguished, separated by a limiting value of 5.21 mm (Fig. 
2.8b and Table 2.3). Dm was close to the true value, but CVD and N were overestimated. The estimated 

diameter distribution indicated two bonbon populations P1 and P2 (Fig. 2.8b and Table 2.3). In P1, the 
mean diameter was close to that of YB, but the coefficient of variation of the diameter was set to 0.001 

because calculations gave a negative value. In P2, the mean diameter was less than that of WB, and the 
coefficient of variation of the diameter was greater than that of WB (Table 2.3). However, the calculated 
image length distribution was fairly close to the observed distribution (not shown). When only one macro-
class was defined, the results were: Dm = 7.20 mm, CVD = 0.240 and N = 249, but the calculated image 

length distribution was considerably different from the observed distribution for larger circle sizes. 
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Estimations were tried using several macro-classes and taking the peaks for the larger sizes into account, 
but no better agreement with the data was obtained. It is probable that the number of images (54) 

generated by slices at random distances from the sphere centers was too small in case E to obtain more 
accurate estimates. 
 
Table 2.3. Application of the proposed method to the images of the mixture of two populations of yellow-orange (YB) 

and white (WB) bonbons obtained from slices 3 mm thick. 

Two or three macro-classes were created, giving two or three circle populations P1, P2, and P3. 

 
Parameters  Case E Case F 

  Numbers of images 

  54 118 

  Number of macro-classes 

  2 2 3 2 

  Lower limits of the macro-classes 

  5.21 6.45 6.90 6.90 

  1.35 1.90 6.4 1.90 

    1.90  

 Real values Estimated values 

WB and YB      

Dm (mm) 6.93 6.65 7.15 7.15 7.14 

CVD 0.189 0.304 0.214 0.213 0.213 

N (number of bonbons) 250 290 224 224 225 

P1      

Dm (mm) 8.45 8.37 8.55 8.80 8.80 

cvD 0.055 0.001* 0.080 0.052 0.052 

number of bonbons 100 143 108 92 92 

P2      

Dm (mm) 5.91 4.98 5.85 6.84 6.00 

cvD 0.060 0.309 0.128 0.001* 0.125 

number of bonbons 150 147 116 19 132 

P3      

Dm (mm)    5.86  

cvD    0.126  

number of bonbons    113  

* Value imposed because cvD
2 was calculated to be negative. 

 

4. Discussion 
 

The method developed here provided accurate estimates, even for highly irregular diameter 

distributions, both for t and LS equal to zero (as in the examples from Wicksell (1925)) and for nonzero 
values, and both for slices equally spaced by small dx and for one almost infinitely long slice when the 
number of images was large enough. This good agreement probably results mainly from the fact that the  
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Fig. 2.8. Application of the proposed method to images of bonbons (a) or bonbon holes (b) included in a transparent 
resin and obtained using slices 3 mm thick. 

In the inset figure, the vertical dotted lines show the macro-class limits; the image frequencies per subclass are 
indicated at the subclass midpoints by squares; the cross symbols show the limits of the one hundred subclasses 
which were created. 

 

proposed method considers the object population as a set of juxtaposed populations, each in its own 
restricted class with a symmetrical diameter distribution. Therefore, D varies only slightly relatively to t 

and LS within each population, and the approximations made in the relations specific to symmetrical 
distributions (see Chapter 1) are close to the exact values. 

The choice of the number of macro-classes and their limits may be somewhat arbitrary in certain 

cases, especially with small samples when it is difficult to determine whether a given local image-
frequency variation is random. Some cases may have to be extensively tested to obtain the best fit 
between the calculated and observed image length distributions. Indeed, it is believed that a given image 
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length distribution can result from only one circle diameter distribution. A proof of this would be 
desirable. The online spreadsheet, ‘Diameter_Distribution.xls’, can be used to test such cases easily. It 

can accommodate up to one hundred subclasses and eight macro-classes, although these numbers are 
theoretically unlimited.  

Negative values of the estimated number of images may possibly occur in classes or macro-classes 

because the number of images is too small. Xu and Pitot (2003) proposed to “neutralize” such values by 
adding these numbers into the smaller classes. The same operation is performed here within each 
population: lm and cvlength are estimated in each macro-class from the sum of the estimated positive and 

negative numbers of images in each class multiplied by the image length or the squared image length in 
the class. 

In the case of the bonbon holes (case E), the estimates were highly inaccurate, probably because the 

number of images was small (54) due to the small number of bonbons from which images were obtained, 
and therefore the samples of bonbon sizes and of distances between slice and bonbon were also small. 
Moreover, the relative measurement errors were probably higher than in case F because the images were 

smaller. In addition, some shadow effects were observed (see Chapter 1). 
 

5. Conclusions 
 

The proposed method, which is easily applicable using the online file, ‘Diameter_Distribution.xls’, 
will probably be useful in many fields. However, it is important not to forget that the object shape needs 

to be close to a circle, cylinder, or sphere. Moreover, the method must be used with caution if images may 
overlap or if diameters are smaller than t or LS in case F or (LS

2 + t2)0.5 in case E. The suggestions which 
were provided to overcome these limitations in many cases for symmetrical populations (see Chapter 1) 

are valuable here. When slice portions are sampled, it is important that their distance from each other be 
greater than Dmax,max ± t (minus sign in case E and plus sign in case F), which may be evaluated by 
preliminary observations or verified a posteriori using the largest observed image. 

It is expected that the method will be useful even for only approximately circular objects, for which 
the author will present an extension of the previous method for circles (see Chapter 1). 
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Annex: Principal relations for estimating the numbers and diameters of objects from their images 
generated by slices when the diameter distribution is perfectly or approximately symmetrical 
 

Consider circles with possibly different diameters on a part of a plane with area A. The number of 

images of these circles is labeled as m when they are generated by a set of slices equally spaced by a very 
small distance 1 / q, or mDmax, one when they are generated by one almost infinitely long slice of length L, 

such that the circle centers are at random distances from the slice. The mean and coefficient of variation 

of the image lengths are labeled as lm and cvlength. 
The diameter Dlm of a circle of which the mean Lm of the image lengths L is equal to lm is estimated 

from lm, t, and LS based on the following equations: 

γDlm = acos (t / Dlm)                                                                                                             (1) 
βDlm= asin (LS / Dlm)                                                                                                            (2) 
c1, Dlm = cos βDlm ± cos γDlm          (minus sign in case E and plus sign in case F)              (3) 

c2, Dlm = 2γDlm - 2βDlm - sin 2γDlm + sin 2βDlm           (case E)                                               (4) 
or: 

c2, Dlm = π - 2βDlm + 4 cos γDlm + sin 2βDlm               (case F)                                              (5) 

Lm = Dlm c2, Dlm / (4 c1, Dlm)                                                                                                  (6) 
By successive approximations, entering values of Dlm in Eq. 6 increasing from lm, up to the predicted 
value of Lm becomes very close to lm. 

The coefficient of variation of the lengths of images of this circle generated by slices at distances 
varying by small values dx from the circle center can be calculated as: 

cvL, Dlm = [16 c1, Dlm c3, Dlm / (3 c2, Dlm
2) -1] 0.5                                                                     (7) 

with: 
c3, Dlm = (3 – cos2 βDlm) cos βDlm – (3 – cos2 γDlm) cos γDlm            (case E)                       (8) 

or: 

c3, Dlm = (3 – cos2 βDlm) cos βDlm – 3 cos γDlm                                 (case F)                       (9) 
When the diameter distribution is perfectly or approximately symmetrical, cvD is estimated from one 

of the two roots (generally the smaller, see Chapter 1) of the quadratic equation: 

(cvlengths
2 + 1) (cvD

2 + 1)2 – 3 (cvL, Dlm
2 + 1) (cvD

2 + 1) + 2 (cvL, Dlm
2 + 1) ≈ 0                   (10) 

Dm is estimated by the equation:  
Dm = 4 c1, Dlm lm / c2, Dlm (cvD

2 + 1)                                                                                   (11) 
and the number n of circles within area A is estimated by the equation: 

n = m / q c1, Dm Dm.                               (case of equally spaced slices)                          (12) 
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or: 
n = mDmax, one A / L c1, Dm Dm.               (case of one almost infinitely long slice)          (13) 

with: 
c1, Dm = cos βDm ± cos γDm              (minus sign in case E and plus sign in case F)        (14) 

where: 

γDm = acos (t / Dm)                                                                                                          (15) 
βDm= asin (LS / Dm)                                                                                                        (16) 
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CHAPTER 3 

 

Estimating the equivalent diameter distribution of 

approximately circular objects from their images in slices when 

the distribution is roughly symmetrical 

 

Abstract 
 

This paper proposes a method for estimating the distribution of the equivalent diameters of planar 
objects only approximately circular from their images generated by slices perpendicular to the object 

plane when the distribution is roughly symmetrical, the object shape is known and the smallest diameter 
is greater than the slice thickness. The cases of opaque and transparent objects relative to the slices and a 
possible image detection limit are considered. In a first step, the method estimates the mean and 

coefficient of variation of the image lengths that would be obtained if each object was a circle with the 
same area as the object, its diameter being the equivalent diameter of the object. These estimates are 
obtained by successive approximations, measuring the lengths of images of a fictive object having the 

same shape as the studied objects. In a second step, the mean and coefficient of variation of the equivalent 
diameters are estimated using a recent method for circles. Valuable predictions were obtained for ellipses 
in numerical simulations and for cross sections of pores observed in a plant phloem sieve plate. 

 

1. Introduction 
 

Estimating the size of inclusions is an important problem in several fields. When slices are made 
through a matrix with inclusions, inclusion sections are obtained. It is expected that these sections 
generate images, when they are exposed to light, from which the inclusion size distribution is researched. 

There are various cases according to slice thickness and the relative transparency of the inclusions and 
matrix. Briefly, the image of an opaque inclusion section in a transparent matrix (case denoted F, for 
“full”) will depend on the greatest dimension of the section while the image of a transparent inclusion in 

an opaque matrix (case denoted E, for “empty”) depends on the smallest dimension which delimits the 
direct light path (Fig. 3.1a-b). The two cases are similar when the slice thickness is zero. This problem is 
important also for the particular case of planar objects (for examples disks) sectioned by perpendicular 

slices which determine strips at their intersections (Fig. 3.1a-b represents now the object plane). Cross-
sections of tube-shaped pores in certain plant tissue are such planar objects. 

Object size may be measured in terms of volume, surface area, or linear dimensions. For objects 

which do possess not a simple geometrical shape such as a sphere or a circle, a useful linear dimension is 
the “equivalent diameter”, that is the diameter of the sphere or circle having the same volume or surface 
area as the object. 

Various methods have been proposed for spherical inclusions when slices are of zero or finite 
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thickness (see references in Chapter 1), and for ellipsoidal inclusions when the slice thickness is zero 
(Wicksell, 1926; Cruz-Orive, 1976, 1978). Recently, I proposed a method for circles which is applicable 

to cross-sections of cylinders and spheres with diameters larger than the slice thickness (See Chapter 1). It 
works, even if there is a detection limit LS (i.e., image lengths smaller than LS cannot be observed), in the 
two previously described cases E and F. Assuming that the diameter distribution is approximately or 

perfectly symmetrical, the mean Dm and the coefficient of variation cvD of the diameters can be estimated 
from the mean lm and the coefficient of variation cvlength of the image lengths. 
 

 
 
Fig. 3.1. Various cases of planar objects and their images obtained from a perpendicular slice. 

Case “E” denotes a transparent object embedded in an opaque matrix: circle (a), irregular with concavities (c), 
ellipse (e). Case “F” denotes an opaque object embedded in a transparent matrix: circle (b), irregular with concavities 
(d), ellipse (f). Graphs (g) through (j) depict various relative positions and sizes of the objects and slices. 

 
Many inclusions of interest are natural objects which are approximately, but only approximately, 

circular, cylindrical or spherical. For example, plant phloem pores are short, only approximately 
cylindrical tubes that pass through the plate between two sieve cells. The cross-section of each tube, as 
shown in Fig. 3.2, is an important parameter of flow rates. As views perpendicular to the tube axis 

showing the pore cross-sections are scarce, it would be desirable to estimate the pore size from the lengths 
of images of their sections visible in longitudinal slices, as portrayed in Fig. 3.1a-c-e. 
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When t and LS are zero, the sum of the measured image lengths depends only on the total cross-
sectional area of the pores. That becomes clear if we consider a large number of slices separated by a very 

small distance dx as the sum of the measured lengths times dx is equal to the area occupied by the pores. 
However, the mean and the coefficient of variation of the lengths vary with the object shape and they vary 
with t and LS when they are nonzero. Therefore, it is not possible to estimate the mean and the coefficient 

of variation of the equivalent diameter of the objects from the mean, here denoted lm, 0, and the coefficient 
of variation, here denoted cvlength, 0, of the image lengths alone using directly the previously described 
method for circles. For example, when the pores depicted in Fig. 3.2 are sectioned by a great systematic 

sample of slices 0.07 µm thick, the values of lm, 0 and cvlength, 0 are 0.303 µm and 0.399 respectively when 
LS is equal to 0.094 µm. Applying my previous method for circles predicts the values 0.352 µm and 0.356 
for Dm and cvD but the true values relative to the equivalent diameter are 0.405 µm and 0.272. Another 

reason for developing a method suitable for objects other than circles is that the image formation is more 
complex (see below). 

 

 
 
Fig. 3.2. Contours of a phloem plate and pore cross-sections drawn from an electron microscopy micrograph by 
Fisher (1975; see his Fig. 18). 

A grid of slice section edges is superimposed on the contour plot. The lengths of the plate projections along axis x 
and axis y are 4.79 and 4.75 µm respectively. The number of pores is 53. The equivalent diameter of the plate is 
4.647 µm.  The mean and coefficient of variation of the equivalent pore diameters are 0.405 µm and 0.272. The slices 
are 0.070 thick and separated by a distance greater than the greatest pore dimension minus the slice thickness. Three 
pores labelled 1, 2 and 3 in bold type were selected as having representative shapes, as described in the text. The 
pores with small figures (1 or 3) and unlabelled pores are classified as similar to one of the three representative pores 
1, 3 and 2 respectively; there are 22, 16 and 15 pores in classes 1, 2 and 3 respectively. 
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In order to obtain information about the particle size distribution from sectional data without making 
any assumptions about the object shape, Pawlas, Nyengaard and Jensen (2009) recently presented a 

method based on the components of the size variance, that due to the variability of the particle sizes and 
that due to local stereological estimation procedure. This method indicates the type of shape of the 
objects, among a number of types (for example, ellipsoid with the ratio of the semi-axe lengths). 

However, by this method each sampled object has to be observed at a same reference point (for example, 
the nucleus for cells). 

In a number of cases, only sections from slices with random distances between slices and particles can 

be obtained whereas the object shape is known. Therefore, relations and a method were researched and 
are here proposed for estimating the equivalent diameter distribution of planar objects which are only 
approximately circular and whose the shape is known. The objects are sectioned by slices perpendicular 

to the object plane with a thickness t and images are obtained with a detection limit LS. The distribution of 
the equivalent diameter is assumed to be approximately or perfectly symmetrical. The method is still 
limited to objects greater than t. 

The method validity was studied with images of ellipses having various axial ratios in cases E and F 
and with images of the real population of pores depicted in Fig. 3.2 under case E. 
 

2. Materials and methods 
 

2.1 Models of image formation  

 

Multiple images may be obtained from a single concave object, especially in case E or when t is small 
in case F (Fig. 3.1c-d). Only the case of convex objects is here considered. The image length depends on 

the position and asymmetry of the object (Fig. 3.1e-f). In case E (Fig. 3.1e), the image length is equal to 
the direct light window width. It is less than or equal to the shorter slice side. In some geometries, the 
window may not even exist. In case F, the image length is equal to the length of projection of the object 

along the slice. Different figures are obtained depending on the relative locations and sizes of the slice 
and object (Fig. 3.1g to j). 
 

2.2. Relations and models developed 

 

In a first step, the method proposed here for planar objects that are only approximately circular 

estimates, from the mean lm, 0 and the coefficient of variation cvlength, 0 of the image lengths, the mean lm 
and coefficient of variation cvlength of the image lengths that would be obtained if each object was a circle 
with the same area as the object, its diameter being thus the equivalent diameter of the object. In a second 

step, it estimates Dm and cvD from lm and cvlength using the method previously proposed for circles (see 
Chapter 1). 

In this method previously proposed for circles with a perfectly or approximately symmetrical 

distribution of diameters, Dm and cvD are estimated by considering a fictive circle of diameter Dlm. This 
diameter Dlm is calculated such that the mean image length Lm of this circle over all possible 
configurations of the section is equal to mean length lm of the images given by all the circles of the 

population. Given values of t and LS, Dlm is calculated from lm by of a series of approximations (see 
Chapter 1). The coefficient of variation of the image lengths of the Dlm-diameter circle is denoted cvL, Dlm. 
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Here it is assumed that if the objects are sufficiently approximately circular, a fictive object which has 
the same shape as these objects and which generates a mean image length equal to lm, 0 has a surface area 

approximately equal to the surface area of a fictive Dlm-diameter circle which generates a mean image 
length equal to the mean length lm of the images generated from all the circles having the same areas as 
the objects. 

Therefore, the length lm is estimated as it follows. A fictive object which generates the mean image 
length Lm, F equal to the mean length lm, 0 of the images generated from all the objects is considered (note 
that the index F stands for “Form only approximately circular”). A fictive circle with the same area is 

considered. Its diameter is denoted Dlm and the mean length Lm of the images which are generated from 
this circle is hypothesized be equal to the mean image length lm which would be generated by the circles 
with the same areas as all the objects. 

As the relation between object area and mean image length is not known for any object shapes and 
values of t and LS whereas the relation between circle diameter and mean image length is known, the 
sequence of the steps to estimate Dlm and then lm is as follows (briefly summarized in Fig. 3.3 and applied 

in Table 3.1): 
i) A first approximate of Dlm, denoted Dlm, 0 is derived from the mean image length lm, 0, t and LS, 

assuming the object to be a circle. 

ii) One object shaped like the planar objects with the same area as a Dlm, 0-diameter circle is drawn by 
hand (or described by its equation in the case of a simple geometric form and computational simulations). 
The lengths of the images of this object obtained from a series of representative slices with equally spaced 

positions and orientations (i.e., the slices are distinguished by small parallel displacements and small 
angular shifts from zero to 180 degrees) are measured (or calculated). Their mean, Lm, F, 0, is calculated, as 
well as their coefficient of variation cvL, F, 0 if necessary (see below). 

iii) The ratio between the mean image length and the circle diameter is assumed to be constant when 
the diameter varies from Dlm, 0 to Dlm. Therefore, as the object with the equivalent diameter Dlm, 0 gives the 
length Lm, F, 0, the equivalent diameter Dlm of the object which would give the length lm, 0 is estimated to 

be: 

0F,m,

0m,
0lm,lm

L

l
DD =                                                                                                     (1) 

This second approximate can be sufficiently accurate in a number of cases. If the previous ratio is not 
very constant (especially if t and LS are great), successive approximations from ii) to iii) can be made. 

iv) The mean length Lm of the images expected from this Dlm-diameter circle is calculated from Dlm, t 

and LS as before. The mean length lm of the images expected from the circles having the same areas as the 
planar objects is then estimated by Lm. 

Then, cvlength is estimated as it follows. In the case of circles, when the circle diameter distribution is 

symmetrical, the following equation has been found (see Chapter 1): 
(cvlengths

2 + 1) (cvD
2 + 1)2 – 3 (cvL, Dlm

2 + 1) (cvD
2 + 1) + 2 (cvL, Dlm

2 + 1) ≈ 0                              (2) 
cvlengths and cvD being the coefficients of variation of the image length from all the circles and of the circle 

diameter, respectively. Eq. (2) can be written also: 
(cvlength

2 + 1) (cvD
2 + 1)2 ≈ (3 cvD

2 + 1) (cvL, Dlm
2 + 1)                                                                 (3) 

It is hypothesized by analogy that the following approximate equation exists if the objects are only 

slightly different from circles: 
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(cvlength, 0
2 + 1) (cvD

2 + 1)2 ≈ (3 cvD
2 + 1) (cvL, F

2 + 1)                                                                   (4) 
where cvlength, 0 and cvL, F are, respectively, the coefficient of variation of the image length from all the 

objects and the coefficient of variation of the image length from an object which has the same surface 
area as the Dlm-diameter circle. The coefficient cvL, F is estimated from a surface shaped like the planar 
objects and having the same area as that of the Dlm-diameter circle like previously made for measuring Lm, 

F, 0. Practically, it is equal or close to cvL, F, 0 when Dlm is close to Dlm, 0 and when t and LS are not too 
great. 

From Eqs. (3) and (4), it follows that: 

cvlength ≈ [(cvlength, 0
 2 + 1) (cvL, Dlm

2 + 1) / (cvL, F
2 + 1) – 1 ]0.5                                                        (5) 

If the equivalent diameter distribution is approximately or perfectly symmetrical, the mean Dm and 
coefficient of variation cvD of the equivalent diameter can be estimated from lm and cvlength by the 

previously proposed method for circles (see Chapter 1). 
 

 
 

 
Fig. 3.3. Sequence of calculations for the proposed estimation method. 

First, the mean and coefficient of variation of the image lengths (lm, 0 and cvlength, 0) obtained from the 
approximately circular objects are calculated from individual image lengths such as li, 0. In order to estimate the mean 
and coefficient of variation of the image lengths (lm and cvlength) which would be obtained from circles with the same 
areas as the approximately circular objects, one object with the same area as the Dlm, 0-diameter circle and one object 
with the same surface area as the Dlm-diameter circle are drawn. The image lengths from both objects which are 
drawn by a heavy line, in case E, are measured directly. 
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Table 3.1. Image lengths and parameters estimated for a ellipse population (ES) in case F with the distribution 1 of 

the equivalent diameter, the axial ratio a / b equal to 1.5, and t and LS equal to 3 (one replication), and for the 

population of the real phloem pores (P) shown in Fig. 3.2, in case E with t and Ls equal to 0.07 and 0.094µm, 

respectively. 

In the latter case, the coefficient of variation cvL, F is estimated as cvL, F, 0 and one of three shapes is assumed for 

the whole population: P1, P2 or P3. 
 
 

Form Diameter 
(µm) 

Image 
mean 
length 
(µm) 

Coefficient 
of 

variation 
(cv*)  

Object population: values of lm, 0 and cv* (cvlength, 0) (calculated for 
ES, measured for P) 

ES 
P 

 
 

8.28 
0.303 

0.285 
0.399 

Circle giving the mean image length lm, 0: diameter Dlm, 0 (estimated 
from lm, 0, t, and LS) 

ES 
P 

9.62 
0.398 

 
 

 
 

Shape having the same area as the Dlm, 0-diameter circle: mean (Lm, F, 

0) and, eventually, cv* (cvL, F, 0) of the image lengths 
 

ES 
P1 
P2 
P3 

 

7.89 
0.289 
0.274 
0.268 

 
0.307 
0.321 
0.342 

Circle having the same area as the shape from which lm, 0 would be 
obtained: diameter Dlm (estimated as Dlm, 0 lm, 0 / Lm, F, 0), mean (Lm) 
and cv* (cvL, Dlm) of the image length 

ES 
P1 
P2 
P3 

10.11 
0.417 
0.440 
0.451 

8.67 
0.318 
0.336 
0.344 

0.212 
0.260 
0.262 
0.264 

Shape having the same area as the Dlm-diameter circle: cv* (cvL, F) of 
the image lengths ES   0.278 

Population of circles having the same surface areas as the ellipses or 
the pores: 
      estimated mean (lm = Lm) and cv* (cvlength) of the image lengths 
 
 
 
 
      estimated mean (Dm) and cv* (cvD) of the diameters 
 
 
 

 
 

ES 
P1 
P2 
P3 

 
ES 
P1 
P2 
P3 

 
 
 
 
 
 
 

10.08 
0.373 
0.401 
0.419 

 
 

8.67 
0.318 
0.336 
0.344 

 
 
 
 
 

 
 

0.220 
0.396 
0.385 
0.366 

 
0.059 
0.345 
0.315 
0.273 

 

2.3 Validation of the method 

 

Populations of one thousand ellipses were constructed, each with a given approximately symmetrical 
equivalent diameter distribution and a given axial ratio a / b (a is the semi-major axis and b the semi-
minor axis). The ellipses of each population were positioned at random distances from an almost 

infinitely long slice and with random orientations. The images generated by the ellipse population were 
calculated for cases E and F with different values of t and LS. The real population of pores depicted in 
Fig. 3.2 was also considered and images of these pores were measured in case E with t and LS equal to 
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0.070 µm (a typical value of slice thickness in microscopy) and 0.094 µm (a value chosen for further 
reference). The method was applied to these images. As the pores have various forms, the estimation 

procedure was carried out three times for three shapes labelled in Fig. 3.2. 
 
2.3.1. Population of ellipses 

 
The equivalent diameter distributions were those previously studied, labelled 1 to 5 (see Chapter 1). 

Briefly, Dm was equal to 10 for all the distributions. Distributions 1 and 2 were Gaussian. Distribution 3 

was derived from distribution 2, the diameter being equal to the mean (10) between 30% and 70%. 
Distributions 4 and 5 were concave and convex beta distributions respectively. Their values of cvD varied 
from 0.100 to 0.243 (Table 3.2a). The axial ratios a / b were 1.25, 1.5, 2 or 3. 

For each population, the area of each ellipse was calculated from each equivalent diameter. The values 
of a and b were calculated from the area, π a b, and the axial ratio a / b. 

Different values of t and LS were chosen: 0, 1, 3 and 5. However, only the values sufficiently small to 

obtain at least one image of the smallest ellipse of the population in positions parallel or perpendicular to 
the slice were considered. Thus, in case E, based on the ellipse equation (b0

2x2 + a0
2y2 = a0

2
b0

2), t and LS 
obeyed the relations b0

2 (t / 2)2 + a0
2 (LS / 2)2 < a0

2 b0
2 and b0

2 (LS / 2)2 + a0
2 (t / 2)2 < a0

2 b0
2, a0 and b0 

referring to the dimensions of the smallest ellipse in the population. In case F, both t and LS were smaller 
than 2b0. 

The following calculations were made for each population. 

As detailed in Annex with Fig. 3.4, each ellipse was positioned at a random distance from the slice 
and with a random angle between the major axis and the slice. For each ellipse giving an image, the 
image length was calculated. The mean, lm, 0, and coefficient of variation, cvlength, 0, of the image lengths 

obtained from all the ellipses were calculated. 
Next, Dlm, 0 was calculated from lm, 0 by successive approximations. 
The axial ratio being known, the dimensions a and b of an ellipse with the same area as a Dlm, 0-

diameter circle were calculated. A set of images of this ellipse was generated from one hundred equally 
spaced slices (the distance between the ellipse centre and the middle of the t-thickness slice being 
between 0 and h0 cosθ  – t / 2 in case E or h0 cosθ  + t / 2 in case F, with h0 = − (b2 + a2 c2)0.5 (see Annex), 

and one hundred orientations varying from zero to 180 degrees (thus 104 possible images). The mean 
image length Lm, F, 0 was calculated. 

Dlm was calculated according to Eq. (1) and Lm and cvL, Dlm were assessed based on Table 2 given in 

Chapter 1. Then, the dimensions a and b of an ellipse with the same area as a Dlm-diameter circle were 
calculated. A set of images was generated from this ellipse like previously described for the ellipse with 
the same surface area as the Dlm, 0-diameter circle. The coefficient of variation of the image lengths cvL, F 

was calculated. 
The value of lm was estimated as Lm and the value of cvlength was estimated by Eq. (5). Based on these 

values, cvD and Dm were calculated according to Chapter 1. 

Ten replications of the previous calculations were made and the means and standard deviations of lm, 0, 
lm, cvlength, 0, cvlength, cvD and Dm among these ten trials were calculated. 

The previous calculations were also made for an axial ratio a / b equal to 1 (circles). The mean values 

of lm and cvlength obtained in this case are denoted (lm)1 and (cvlength)1. 
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The mean values of lm, 0, lm, cvlength, 0 and cvlength obtained for various values of a / b were compared to 
those obtained in the case of the circle through the ratios Rlm, 0 = lm, 0 / (lm)1, Rlm = lm / (lm)1, Rcvlength, 0 = 

cvlength, 0 / (cvlength)1 and Rcvlength = cvlength / (cvlength)1. 
 

 
Fig. 3.4. Images of an ellipse generated by a slice (a / b is approximately 1.7) for cases E (a,b) and F (c, d). 

D1 and D2 are the sides of the slice. As the object is symmetrical, only slices where D1 is more distant from the 
ellipse centre than D2 are considered. In case E, the image is M1M3D1 in panel (a), as only this part of the section 
M1M2, which is smaller than M3M4, is facing M3M4. In panel (b) no image is obtained as the sections M1M2 and 
M3M4 do not overlap. In panel (c), the image is M4D1T1D1. In panel (d), the image is T1D1T2D1. 

 

 

2.3.2. Population of phloem sieve plate pores 

 

A transverse view of an entire phloem sieve plate was published by Fisher (1975) in his Fig. 18. Fig. 
3.2 depicts outlines taken from this view which shows an entire sieve plate with 53 pores. A series of 

parallel slices 0.07 µm thick and spaced 0.5 µm apart (about the diameter of the greatest pore minus t) 
was superimposed on the outlines. The pores were assumed to be transparent cylinders in opaque slices lit 
by a direct light (case E). Thus, whenever both sides of a slice section pass through a pore, the length of 

the window was measured. Only the lengths greater than 0.094 µm (LS) were considered to be detectable. 
The process was repeated for five other orientations of the grid, each turned by an angle 30 degrees with 
respect to the last. The mean lm, 0 and the coefficient of variations cvlength, 0 of the image lengths were 
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calculated. 
The diameter Dlm, 0 of the circle whose mean image length is expected to be lm, 0 was calculated. I then 

selected three pores of different shapes, which in Fig. 3.2 are labelled P1 (more rounded), P2 (more 
oblong) and P3 (more irregular with some convexities). The following procedure was carried out for each 
of the three pores. First, the outline of the pore was copied to a "bmp" file. Second, using the “Image J” 

software, I counted the number of pixels in the pore area and determined the scale length that would give 
a pore area equal to that of the Dm, 0-diameter circle. The height of the pore and its greatest dimension 
were measured on this scale. Third, the image was inserted into an Excel worksheet. Using Excel tools, 

the coordinates of several points along the pore outline were recorded to create one hundred copies of the 
pore. The scale length was determined by the height of the pore and the smallest and greatest ordinates. 
Each copy was positioned at a different distance from the middle of a slice 0.07 µm thick (the distance 

varying by one-tenth the greatest dimension of the pore minus the slice thickness) and rotated by an angle 
varying from 0 to 162 degrees in eighteen-degree intervals (Fig. 3.5 shows all the copies of the shape 2). 
As previously made for the sieve plate, whenever both sides of a slice sectioned a pore, the length of the 

window was measured (using Image J). In some images of P3, where a multiple image was observed, 
only the longer image part was counted. Finally, I calculated the mean Lm, F, 0 and coefficient of variation 
cvL, F, 0 of lengths longer than 0.094 µm (LS). 

 

 
Fig. 3.5. One hundred identical shapes having the same area as the circle whose expected mean image length is equal 
to the measured mean length lm, 0 of the images of the pores in Fig. 3.2, shaped according to the shape P2. 

The surfaces are placed at ten different distances from the slice, varying by one tenth of the longest dimension of 
the object minus t and rotated by an angle varying by 18-degrees steps from 0 to 162 degrees. 

 

I calculated Dlm using Eq. (1) under hypothesis that all pores were shaped exactly the same (either P1, 
P2 or P3). I then calculated Lm and set lm equal to Lm. The coefficient of variation cvlength was calculated 
using Eq. (5). Dm and cvD were calculated according to the method laid out in Chapter 1. 



Approximately Circular Objects and Slices Less Thick than the Diameters                                       Chap. 3 
_____________________________________________________________________________________  

- 59 - 

The real pore areas (Fig. 3.2) were measured to calculate the equivalent pore diameters and the above 
estimates were compared to their target values. Moreover, the pores were fitted to ellipses using Image J 

which provided their ratio a / b. 
 

3. Results 
 

3.1. Population of ellipses 

 

Table 3.1 shows the sequence of calculations made in case F for one simulation with an ellipse 
population constructed with the distribution 1, a / b equal to 1.5, and t and LS equal to 3. The values of 
(lm)1 and (cvlength)1 obtained for the five distributions were close to those previously obtained in Chapter 1 

from circles sectioned by equally spaced slices with the same values of t and LS (not shown). The 
predicted values of cvD and Dm were also close to the true values (Table 3.2a-b). 

Rlm and Rcvlength were much nearer to 1 than to Rlm, 0 and Rcvlength, 0 respectively (Fig. 3.6 shows only the 

data for distribution 1). In case E, at a given value of a / b, Rlm, 0 and Rcvlength, 0 tended to be lower when LS 
was higher. 

The standard deviations of cvD and Dm over the tens randomly generated image length distributions 

were 0.02 and 0.1 respectively in average. The estimates of cvD and Dm were very close to the true values 
(Table 3.2c-d). However, when a / b and/or t were higher, the estimates were less close to the true values. 

 
Table 3.2a. Estimated values of cvD when the axial ratio was 1 (circle). The two values are for cases E and F, 

respectively from left to right. No value was calculated if t or LS was too large to obtain at least one image from the 

smallest ellipse. The real values of cvD are indicated in line 2. 
 

t LS Distribution 1 Distribution 2 Distribution 3 Distribution 4 Distribution 5 

  0.100 0.200 0.196 0.171 0.243 

       
0 0 0.10  -  0.11 0.21  -  0.20 0.20  -  0.20 0.16  -  0.15 0.26  -  0.27 

0 1 0.11  -  0.08 0.20  -  0.21 0.18  -  0.18 0.17  -  0.15 0.26  -  0.28 

0 3 0.09  -  0.10 0.19  -  0.19 0.20  -  0.18 0.15  -  0.15 0.25  -  0.25 

0 5 0.09  -  0.09 - - - 0.23  -  0.23 

1 0 0.09  -  0.10 0.21  -  0.21 0.20  -  0.20 0.14  -  0.16 0.27  -  0.25 
1 1 0.11  -  0.11 0.22  -  0.19 0.20  -  0.18 0.18  -  0.16 0.26  -  0.26 

1 3 0.10  -  0.08 0.18  -  0.18 0.19  -  0.18 0.13  -  0.15 0.26  -  0.25 

1 5 0.09  -  0.09 - - - 0.23  -  0.23 

3 0 0.10  -  0.09 0.23  -  0.19 0.22  -  0.19 0.16  -  0.16 0.30  -  0.25 
3 1 0.10  -  0.07 0.23  -  0.20 0.22  -  0.20 0.17  -  0.15 0.29  -  0.27 

3 3 0.10  -  0.08          -  0.19          -  0.18 0.14  -  0.15 0.27  -  0.25 

3 5 0.08  -  0.09 - - - 0.23  -  0.23 

5 0 0.13  -  0.10 - - - 0.36  -  0.26 
5 1 0.12  -  0.09 - - - 0.34  -  0.26 

5 3 0.12  -  0.08 - - - 0.31  -  0.24 

5 5          -  0.09 - - -          -  0.24 
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Table 3.2b. Estimated values of Dm when the axial ratio was 1 (circle). See Table 3.2a legend. The real value of Dm 

was 10 in all five distributions. 

 
t LS Distribution 1 Distribution 2 Distribution 3 Distribution 4 Distribution 5 

       
0 0 10.0  -  9.8 9.8  -  9.9 9.9  -  9.9 10.0  -  10.0 9.9  -  9.8 

0 1 10.0  -  10.0 9.9  -  9.8 10.1  -  10.1 10.0  -  10.0 10.0  -  9.8 

0 3 10.0  -  9.9 10.1  -  9.9 10.0  -  10.0 10.1  -  10.0 10.1  -  9.9 

0 5 10.0  -  10.0 - - - 10.3  -  10.2 

1 0 10.0  -  10.0 9.9  -  9.8 10.0  -  9.9 10.2  -  10.0 9.8  -  9.9 
1 1 9.9  -  9.9 9.9  -  10.1 10.0  -  10.1 10.0  -  10.0 10.0  -  9.9 

1 3 9.9  -  10.1 10.2  -  10.1 10.1  -  10.0 10.2  -  10.1 10.0  -  10.0 

1 5 10.0  -  10.0 - - - 10.4  -  10.1 

3 0 10.0  -  10.0 10.1  -  9.9 10.1  -  9.9 10.1  -  10.0 10.0  -  9.9 
3 1 10.0  -  10.0 9.9  -  9.9 10.0  -  9.8 10.1  -  10.0 10.0  -  9.8 

3 3 10.1  -  10.0          -  10.0          -  10.0 10.3  -  10.0 10.3  -  9.9 

3 5 10.2  -  10.0 - - - 10.7  -  10.1 

5 0 9.9  -  10.0 - - - 9.8  -  9.8 
5 1 10.0  -  10.0 - - - 10.0  -  9.7 

5 3 10.0  -  10.0 - - - 10.2  -  9.8 

5 5          -  10.0 - - -          -  10.0 

 

3.2. Population of phloem sieve plate pores 

 
Table 3.1 shows the values of lm, 0 and cvlength, 0 obtained with the 147 measured images. The image 

lengths varied with the position of the grid (Table 3.3). The axial ratios a / b of pore shapes P1, P2 and P3 
which were fitted to ellipses by Image J were 1.12, 1.67 and 1.66 respectively. Table 3.1 shows the 
sequence of the calculations and the estimates of Dm and cvD for each of the three assumed pore shapes. 

The mean values of Dm and of cvD obtained from this method, averaging over all three forms, were 0.398 
µm and 0.310 respectively. The equivalent diameter distribution based on these parameters, assuming the 
distribution to be normal, is shown in Fig. 3.7. When Dm and cvD were weighted by the number of pores 

of each shape (22, 16 and 15 respectively for P1, P2 and P3) their values were 0.394 µm and 0.314. 
Based on the measured pore areas, the mean and the coefficient of variation of the equivalent pore 

diameter were 0.405 µm and 0.272 respectively. The equivalent diameter distribution was not quite 

symmetrical, longer diameters having higher frequencies (Fig. 3.7). When the pores were fitted to ellipses 
using Image J, the axial ratio a / b of 28, 40, 28 and 4% of the pores was into the classes ]1.02 - 1.25], 
]1.25 - 1.5], ]1.5 – 2] or  ]2 – 2.21]  respectively, and the mean axial ratios were 1.22, 166 and 1.55 for the 

pores shaped like P1, P2 and P3 respectively. 
 

4. Discussion 
 

The proposed method involves two successive steps which assume the distribution of the equivalent 
diameters of the objects to be approximately or perfectly symmetrical. The first aims to estimate, from the 

mean lm, 0 and coefficient of variation cvlength, 0 of the measured lengths of images of approximately 
circular objects, the mean lm and coefficient of variation cvlength of the lengths of images that would be
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Fig. 3.6. Variations of Rlm, 0, Rcvlength, 0, Rlm and Rcvlength with respect to the ratio a / b, for cases E and F in distribution 
1. 

Rlm, 0 and Rcvlength, 0 (empty losanges) are ratios of the mean (lm, 0) or coefficient of variation (cvlength, 0) of the 
image length obtained from the ellipses to the mean or coefficient of variation of the image length obtained from 
circles having the same surface area. Rlm and Rcvlength (dots) are ratios of the mean (lm) or coefficient of variation 
(cvlength) of the image length estimated from lm, 0 or cvlength, 0 to the mean or coefficient of variation of the image length 
obtained from circles having the same surface areas as the ellipses. The abscissas are all exactly 1.25, 1.5, 2 and 3, 
but have been slightly shifted to distinguish sub-groups with different values of LS. In order from left to right, LS is 0, 
1, 3 or 5; the last sub-group is missing for abscissas 2 and 3. 
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Table 3.2c. Estimated values of cvD for axial ratios > 1. The two values are for cases E and F, respectively from left 

to right. No value was calculated if t or LS was too large to obtain at least one image from the smallest ellipse. Note 

that the lines with t = 5 and a / b equal to 2 or 3 are not shown as no value was obtained. The real values of cvD are 

indicated in line 2. 

 
a / b t LS Distribution 1 Distribution 2 Distribution 3 Distribution 4 Distribution 5 

   0.100 0.200 0.196 0.171 0.243 
        

1.25 0 0 0.10  -  0.10 0.20  -  0.19 0.19  -  0.21 0.17  -  0.15 0.25  -  0.26 
1.25 0 1 0.07  -  0.10 0.20  -  0.21 0.19  -  0.18 0.16  -  0.16 0.27  -  0.26 
1.25 0 3 0.10  -  0.09 0.19  -  0.19 0.19  -  0.18 0.15  -  0.15 0.24  -  0.25 
1.25 0 5 0.09  -  0.09          -                   -                   -          0.22  -  0.23 
1.25 1 0 0.10  -  0.09 0.19  -  0.19 0.20  -  0.18 0.16  -  0.12 0.27  -  0.26 
1.25 1 1 0.10  -  0.11 0.20  -  0.20 0.20  -  0.20 0.15  -  0.16 0.27  -  0.26 
1.25 1 3 0.10  -  0.09          -  0.19          -  0.18 0.16  -  0.13 0.26  -  0.25 
1.25 1 5 0.09  -  0.09 -           -                   -          0.23  -  0.22 
1.25 3 0 0.12  -  0.08 0.22  -  0.22 0.22  -  0.20 0.19  -  0.13 0.32  -  0.24 
1.25 3 1 0.12  -  0.08          -  0.19          -  0.18 0.16  -  0.15 0.32  -  0.24 
1.25 3 3 0.10  -  0.09          -  0.19          -  0.18          -  0.14 0.29  -  0.23 
1.25 3 5 0.10  -  0.09 -  -  -  0.24  -  0.22 
1.25 5 0 0.13  -  0.09 -  -  -  0.39  -  0.26 
1.25 5 1 0.15  -  0.09 -  -  -  0.38  -  0.25 
1.25 5 3 0.12  -  0.08 -  -  -  0.31  -  0.25 
1.25 5 5          -  0.08 -  -  -           -  0.23 

1.5 0 0 0.10  -  0.09 0.19  -  0.21 0.21  -  0.18 0.17  -  0.16 0.26  -  0.27 
1.5 0 1 0.10  -  0.11 0.20  -  0.20 0.20  -  0.21 0.15  -  0.16 0.27  -  0.27 
1.5 0 3 0.09  -  0.08 -  -  0.14  -  0.14 0.24  -  0.24 
1.5 0 5 0.09  -  0.08 -  -  -  0.22  -  0.23 
1.5 1 0 0.13  -  0.13 0.19  -  0.22 0.22  -  0.22 0.17  -  0.17 0.27  -  0.30 
1.5 1 1 0.10  -  0.07 0.21  -  0.20 0.19  -  0.20 0.17  -  0.15 0.26  -  0.26 
1.5 1 3 0.10  -  0.09 -  -  0.15  -  0.15 0.26  -  0.24 
1.5 1 5 0.08  -  0.09 -  -           -          0.23  -  0.21 
1.5 3 0 0.11  -  0.05 -  -  0.17  -  0.13 0.31  -  0.25 
1.5 3 1 0.11  -  0.09 -  -  0.17  -  0.14 0.32  -  0.26 
1.5 3 3 0.12  -  0.10 -  -           -  0.15 0.29  -  0.23 
1.5 3 5 0.10  -  0.08 -  -  -  0.24  -  0.22 
1.5 5 0 0.15  -  0.12 -  -  -  0.42  -  0.25 
1.5 5 1 0.15  -  0.08 -  -  -  0.48  -  0.23 
1.5 5 3 0.12  -  0.10 -  -  -  0.35  -  0.22 
1.5 5 5          -  0.09 -  -  -           -  0.21 

2 0 0 0.10  -  0.11 0.21  -  0.20 0.18  -  0.18 0.16  -  0.15 0.27  -  0.27 
2 0 1 0.13  -  0.10 0.18  -  0.18 0.20  -  0.18 0.14  -  0.15 0.27  -  0.27 
2 0 3 -  -  -  0.15  -  0.15 0.24  -  0.27 
2 0 5 -  -  -  -  -  
2 1 0 0.10  -  0.10 0.21  -  0.23 0.21  -  0.21 0.16  -  0.21 0.28  -  0.30 
2 1 1 0.10  -  0.10 0.19  -  0.20 0.20  -  0.19 0.15  -  0.17 0.27  -  0.26 
2 1 3 -  -  -  -  -  
2 1 5 -  -  -  -  -  
2 3 0 -  -  -  -  -  
2 3 1 -  -  -  -  -  
2 3 3 -  -  -  -  -  
2 3 5 -  -  -  -  -  
3 0 0 0.06  -  0.11 0.23  -  0.19 0.20  -  0.22 0.13  -  0.17 0.26  -  0.25 
3 0 1 0.06  -  0.12 0.13  -  0.21 0.20  -  0.17 0.15  -  0.17 0.27  -  0.25 
3 0 3 -  -  -  -  -  
3 0 5 -  -  -  -  -  
3 1 0 0.05  -  0.12 0.20  -  0.27 0.19  -  0.20 0.17  -  0.18 0.26  -  0.29 
3 1 1 0.08  -  0.12 0.19  -  0.18 0.19  -  0.20 0.17  -  0.16 0.27  -  0.22 
3 1 3 0.12  -  0.09 -  -  -  0.28  -  0.23 
3 1 5          -          -  -  -           -          
3 3 0 0.05  -  0.10 -  -  -  0.42  -  0.14 
3 3 1 0.05  -  0.09 -  -  -  0.35  -  0.19 
3 3 3 0.08  -  0.10 -  -  -  0.30  -  0.18 
3 3 5 0.06  -  0.11 0.23  -  0.19 0.20  -  0.22 0.13  -  0.17 0.26  -  0.25 
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Table 3.2d. Estimated values of Dm for axial ratios > 1. See Table 3.2c legend. The real mean diameter was 10 in all 

five distributions. 

 
a / b t LS Distribution 1 Distribution 2 Distribution 3 Distribution 4 Distribution 5 

        
1.25 0 0 10.0  -  10.0 10.0  -  10.0 10.0  -  9.9 10.0  -  10.1 10.0  -  10.0 
1.25 0 1 10.1  -  10.0 10.0  -  10.0 10.0  -  10.1 10.0  -  10.0 9.9  -  10.0 
1.25 0 3 10.0  -  10.0 10.0  -  10.1 10.1  -  10.2 10.1  -  10.1 10.1  -  10.1 
1.25 0 5 10.1  -  10.0 - - - 10.3  -  10.3 
1.25 1 0 10.0  -  10.0 10.1  -  10.1 10.1  -  10.1 10.1  -  10.2 9.9  -  10.0 
1.25 1 1 10.0  -  9.9 10.1  -  9.9 10.0  -  9.9 10.1  -  10.0 9.9  -  9.9 
1.25 1 3 10.0  -  10.0          -  10.0          -  10.1 10.1  -  10.2 10.1  -  10.0 
1.25 1 5 10.1  -  10.0 - - - 10.3  -  10.4 
1.25 3 0 10.0  -  9.8 10.1  -  9.6 10.1  -  9.6 10.0  -  9.9 9.8  -  9.8 
1.25 3 1 9.9  -  10.0          -  9.8          -  10.0 10.2  -  9.9 9.8  -  9.9 
1.25 3 3 10.0  -  10.0          -  9.9          -  9.9          -  10.1 10.1  -  9.9 
1.25 3 5 10.0  -  10.0 - - - 10.6  -  10.1 
1.25 5 0 10.1  -  9.9 - - - 9.7  -  9.6 
1.25 5 1 10.0  -  9.9 - - - 9.8  -  9.8 
1.25 5 3 10.1  -  10.0 - - - 10.4  -  9.8 
1.25 5 5          -  10.1 - - -          -  10.0 

1.5 0 0 9.9  -  10.0 10.0  -  10.0 9.8  -  10.1 10.0  -  10.1 10.0  -  9.8 
1.5 0 1 10.0  -  9.9 10.0  -  10.0 10.0  -  9.9 10.1  -  10.0 9.8  -  9.9 
1.5 0 3 10.0  -  10.0 - - 10.1  -  10.2 10.1  -  10.1 
1.5 0 5 10.0  -  10.1 - - - 10.4  -  10.3 
1.5 1 0 9.9  -  10.1 10.1  -  10.1 9.9  -  10.1 10.0  -  10.2 9.9  -  9.9 
1.5 1 1 10.0  -  10.0 10.1  -  9.9 10.1  -  9.9 10.0  -  10.1 10.0  -  9.9 
1.5 1 3 10.0  -  10.0 - - 10.2  -  10.2 10.0  -  10.0 
1.5 1 5 10.0  -  9.9 - -          -          10.4  -  10.5 
1.5 3 0 10.1  -  10.0 - - 10.2  -  9.9 10.0  -  9.7 
1.5 3 1 10.0  -  9.8 - - 10.2  -  10.0 9.9  -  9.8 
1.5 3 3 10.1  -  9.9 - -          -  10.0 10.1  -  10.1 
1.5 3 5 10.1  -  10.0 - - - 10.8  -  10.2 
1.5 5 0 10.3  -  9.4 - - - 9.7  -  9.4 
1.5 5 1 10.3  -  9.8 - - - 9.3  -  9.7 
1.5 5 3 10.4  -  9.9 - - - 10.3  -  9.9 
1.5 5 5          -  10.0 - - -          -  9.9 

2 0 0 10.0  -  10.0 10.0  -  10.0 10.1  -  9.9 10.1  -  10.1 9.9  -  10.0 
2 0 1 9.8  -  10.0 10.0  -  10.1 9.9  -  10.1 10.1  -  10.0 9.9  -  9.9 
2 0 3 9.9  -  10.0 - - 10.1  -  10.1 10.0  -  10.0 
2 0 5 - - - - - 
2 1 0 10.0  -  10.4 10.0  -  10.3 10.0  -  10.3 10.1  -  10.2 9.9  -  10.2 
2 1 1 10.0  -  9.9 10.0  -  10.1 10.0  -  10.0 10.1  -  10.1 10.0  -  9.9 
2 1 3 9.9  -  9.8 - -          -  10.1 10.0  -  9.9 
2 1 5 - - - - - 
2 3 0 10.3  -  9.8 - - 10.5  -  9.9 10.0  -  9.1 
2 3 1 10.4  -  9.6 - -          -  9.9 10.1  -  9.7 
2 3 3 10.3  -  9.8 - -          -  10.1 10.2  -  10.1 
2 3 5 - - - - - 
3 0 0 10.0  -  9.9 9.9  -  10.1 9.9  -  9.9 10.1  -  10.0 9.9  -  10.1 
3 0 1 10.0  -  10.0 10.2  -  9.9 9.8  -  10.1 9.9  -  10.0 9.8  -  10.1 
3 0 3 9.8  -  9.8 - - - 10.0  -  9.8 
3 0 5 - - - - - 
3 1 0 10.4  -  10.5 10.2  -  10.1 10.4  -  10.4 10.3  -  10.5 10.2  -  10.1 
3 1 1 10.2  -  10.0 10.2  -  10.1 10.2  -  10.1 10.2  -  10.0 10.2  -  10.1 
3 1 3 9.9  -  9.8 - - - 9.9  -  10.0 
3 1 5 - - - - - 
3 3 0 12.4  -  9.2 - - - 11.0  -  9.8 
3 3 1 12.2  -  9.3 - - - 11.3  -  9.4 
3 3 3 10.3  -  9.5 - - - 11.2  -  9.9 
3 3 5 - - - - - 
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Table 3.3. Number of the pore images and mean and coefficient of variation of the image lengths obtained assuming 

case E from the view from Fisher (1975). These values are calculated for six orientations of the grid superimposed on 

the plate shown in Fig. 3.2 separated by an angle of 30°. 
 

Grid positions (degrees) 0 30 60 90 120 150 

Numbers of images 21 22 25 28 29 22 
Mean image length 0.338 0.348 0.291 0.282 0.283 0.283 

Coefficient of variation 0.406 0.369 0.436 0.360 0.450 0.471 

 

 
 
Fig. 3.7. Cumulative distribution of the equivalent diameters of the 53 pores of the sieve plate shown in Fig. 3.2 
(heavy dots) and corresponding normal distributions whose mean and coefficient of variation are based on the real 
pore areas (0.405 µm and 0.272; heavy line) or are equal to the values estimated from the estimated values of lm and 
cvlength (0.394 µm and 0.314; fine line). 
 

obtained if each object was a circle with the same area as the object. It needs measuring (or calculating in 
case of numerical simulations) the lengths of images of a fictive object. The second step consists to apply 

the previously proposed method to estimate the mean Dm and the coefficient of variation cvD of the circle 
diameters. 

The examples with ellipses showed that the estimations of lm and cvlength obtained by this method were 

accurate as Rlm and Rcvlength were much nearer to 1 than Rlm, 0 and Rcvlength, 0 (Fig. 3.4). The estimated 
values of Dm were very close to the true values (within 10%) except when both a / b and t were high (both 
equal to 3). The deviations in the estimations of Dm and cvD which occurred when a / b  and t increased 

were likely due to deviations in the estimations made in the two steps. 
In the example with the pores, the axial ratio of almost all the pores was lower than 2. Therefore, 

although the number of images was not very high (147), the distribution of the equivalent pore diameters 

only very approximately symmetrical, and the shape more irregular than the ellipses with even some 
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convexities, the estimated values of Dm and cvD (0.394 µm and 0.314) could be close to the true values 
obtained by directly measuring the areas of the 53 pores (0.405 µm and 0.272). The equivalent pore 

diameter distribution predicted from these estimated values seems sufficiently accurate to provide useful 
information for a number of questions (Fig. 3.7). 

These results show that in the two cases E and F, the equivalent diameter distribution of 

approximately circular objects can be accurately assessed by the proposed method. The examples with 
ellipses indicate the range of shapes that can be considered approximately circular in this context. The 
method does need the object shape to be known. In the example with pores, a transverse section like that 

shown in Fig. 3.2 can be extrapolated to infer the shape of other pores in the same tissue. Furthermore, 
the method assumes that all objects have the same shape. However, when two or more shapes occur and 
the shapes are not very different from one another, the example with the pores demonstrates that the 

method can be still applied by conducting the analysis on each form in succession. Compensations exist 
likely between the probable deviations which occur in the values estimated for each shape from the mean 
length of the images of all shapes. However, it is necessary to know about the relative frequencies of the 

different shapes for such estimations. 
The method assumes that the equivalent diameter distribution is approximately or perfectly 

symmetrical. Generally, the distribution is not known. For simple shapes like ellipses, I recommend 

estimating the equivalent diameters from the normal distribution definite by cvD and Dm, then calculating 
the values of a and finally calculating the distribution of the lengths of the images given by the population 
according to the calculations described previously for ellipses. Good agreement with the real distribution 

will support the hypothesis that the distribution is approximately normal (and thus approximately 
symmetrical). 

Of course, the method will be generally less accurate when the number of images is small or when the 

distribution is very asymmetrical. Some other limitations have previously been indicated in the context of 
circular objects (see Chapter 1). However, the precise effects of variations in these parameters remain to 
be studied.  

From the equivalent diameter distribution, the number of objects can be easily derived (see Chapter 1). 
The proposed method is easily applicable and will be likely very useful in many fields, especially for 

estimating the size and number of pores in the phloem sieve plates of the fruit pedicel which limit likely 

the fruit growth (Bussières, 2002). The author is studying an extension of the method for approximately 
spherical objects. 
 

5. Conclusions 
 

The distribution of the equivalent diameters of approximately circular objects, opaque or transparent 

relative to the medium in which they are embedded, can be assessed from images of their sections in 
slices by the proposed method when the distribution is roughly symmetrical and the object shape is 
known. 
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Annex 
 

Each ellipse was positioned at a random distance from the slice and with a random angle between the 
major axis and the slice. For that, the value of a obtained for the greatest ellipse is denoted amax. The 
distance, denoted dist, between the centre of each ellipse with a given value of a and the middle of the t-

thickness slice was taken to be a random value between 0 and amax − t / 2 in case E or amax + t / 2 in 
case F. The slice side farthest from the ellipse centre is labelled D1 and the nearest side is labelled D2. 
Referring to Fig. 3.4, the angle θ was taken to be a random value between 0 and 180 degrees. The 

absolute value of the ordinate at the origin, h0, of line D0 parallel to the slice and tangent at T0 (showed 
only in Fig. 3.4c-d) was calculated to be (b2 + a2 c2)0.5, with c = tan θ. The distance OM0 was |h0 cosθ |. 
When OM0 was shorter than dist + t / 2 in case E or dist − t / 2 in case F, the ellipse did not give image. 

For each ellipse giving an image, the image length was calculated based on a) the equations of the 
ellipse (a2

x
2 + b2

y
2 = a2

b
2), the line D1 (y = c x + h1) and possibly the line D2 (y = c x + h2), b) the points of 

intersection M1, M2, M3 and M4 between lines D1 and D2 and the ellipse, c) the equations of the lines 

perpendicular to D1 going through M3 and M4, d) the coordinates of the intersections M3D1 and M4D1 and 
e) the equation of the line perpendicular to D1 going through the ellipse centre, f) in case F, the equations 
of the line parallel to D1 and tangent to the ellipse at point T0, and of the lines perpendicular to D1 and 

tangent to the ellipse at points T1 and T2. In case E, the image length was equal to M1M2 or to M1−M3D1 
(or M2−M4D1); this latter was used if the shortest diagonal line, M1M3 (or M2M4), was shorter than M1M2. 
In case F, the image length was equal to the sum of (i) the longest length among M−T2D1 (when T2 was in 

the slice), M−M1 and M−M4D1, and (ii) the longest length among M−T1D1 (when T1 was in the slice), 
M−M2 and M−M3D1. Image lengths shorter than LS were neglected.  
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CHAPTER 4 

 

Estimating the number and diameter distribution of opaque 

objects from their images through transparent thick slices: 

application to analysis of synaptic vesicles  

 

Abstract 
 

Estimation of the numbers and diameter distributions of opaque circular, cylindrical, or spherical 
objects dispersed in a transparent matrix from images obtained by slices perpendicular to a diameter is an 
important problem in many fields. In many microscopy studies, the slices are thicker than the diameters of 

the objects of interest. Often, the main question for statistical analysis is whether the distribution of object 
diameters is normal, near normal, or asymmetrical. Here a first method is proposed for the case of an 
approximately or perfectly normal diameter distribution. It distinguishes the images of the objects with 

centres within the slice from those of the objects with centres outside the slice. As the image of an object 
centred outside the slice is equivalent to one obtained by a slice of zero thickness, the estimation of 
number and diameter distribution can be assessed using a recent method valuable in this case if the 

diameter distribution is symmetrical. Then, based on this first method, a general method is proposed for 
any distribution by treating the distribution as a set of juxtaposed normal distributions. These methods 
were successfully tested and used to study a published data set of tissue slices containing synaptic 

vesicles. The number of vesicles and the diameter distribution were assessed. The frequency of the vesicle 
diameters in the range 38–50 nm was found to be lower than expected from a normal distribution. 
 

1. Introduction 
 

Modern methods of microscopy are often used to estimate the number and diameter distribution of 

opaque objects dispersed in a transparent matrix. These parameters are estimated by slicing through the 
matrix to infer numbers and morphological parameters from the images of the objects or object fragments 
projected onto a plane. Ideally, slice thickness is adjusted according to the size of the studied objects, the 

matrix nature, slicing method, and observation method. When the slices are thinner, the probability of 
observing individual overlapping objects is decreased. Furthermore, if the matrix is not quite transparent, 
the transparency of the slices is improved. However, the proportion of objects that are cut by the slices is 

increased. Therefore, two extreme cases can be distinguished: when the slices are thinner than the 
smallest objects and when the slices are thicker than the largest diameter objects. 

In many cases, the main aim is to determine whether the object diameter distribution is normal or not 

quite normal. Indeed, deviations from normality may have functional significance. The problem is to 
estimate the parameters of a normal diameter distribution that yields an image size distribution as close as 
possible to the observed image size distribution. Fig. 4.1 shows the image length distributions for two 
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populations of circles with symmetrical diameter distributions. Image length distributions from thick 
slices (25 nm) differ from distributions from slices of thickness nil for both populations (10 nm and 15 nm 

in diameter) and in all cases, the distribution deviates from normality. In many others cases, the true 
object diameter distribution is not normal, with possibly several peaks. 

In cases where the slices are thinner than the object diameters, methods have been proposed to 

estimate the numbers and diameter distributions of circles, spheres, or cylinders from images obtained 
when the distribution is approximately or perfectly normal (see Chapter 1). A unique case is obtained 
when the slice thickness is nil, as when a matrix is cut into two parts by a razor. In this case, the images 

are the circle or sphere sections visible on the cut surfaces of the matrix. Then a method has been 
proposed for any distribution (see Chapter 2) that treats the distribution as a set of juxtaposed normal 
distributions. 

 

 
 

Fig. 4.1. Examples of image length distributions (lines with circles) obtained by slices 25 nm thick (empty circles) or 
of thickness nil (full circles) that cut circles with a normal diameter distribution. 

The mean and coefficient of variation of diameter were 10 nm and 0.2 (dotted lines) or 15 nm and 0.1 (full lines). 
Data are marked at the centres of the classes 1 nm large. In case of slices 25 nm thick, the images are calculated based 
on the analysis presented here. 

 
In cases where the slices are thicker than the largest object diameters (“thick slices” should be used 

only in this case), the problem is more complex because both entire objects and object fragments are 
present in the slices. Methods have been proposed by Feuerverger et al. (2000) and Kim et al. (2000), who 
also provided references to earlier methods. They applied their methods to synaptic vesicles to assess the 

mean diameter. However, these methods are based on mathematical principles unfamiliar to most 
biologists (e.g. the Volterra integral equation). 

For this case of thick slices, a method is proposed here. It is applicable when the distribution is 

approximately or perfectly normal. It uses relations previously established for slices of thickness nil. 
Based on this new method, a general method for any distribution is then proposed. After validation with 
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two examples, the proposed methods are used to analyze synaptic vesicle distributions studied by 
Feuerverger et al (2000). 

 

2. Theory: analysis and relations developed 
 

The cases of circular, cylindrical, and spherical objects are considered. The cases for cylindrical and 
spherical objects are extensions of the case for circles, however, so the analysis of circular objects in a 
matrix will be presented first.  

Consider a slice of thickness T through a transparent matrix containing circles that are in any plane P 
perpendicular to the slice and that are opaque relative to the matrix (Fig. 4.2). The diameters are smaller 
than T. The images of the circles within the slice or cut by the slice are observed on a plane PI parallel to 

the slice. These images are line segments. The circles are assumed to be dispersed at random in the plane 
P, and sufficiently spaced so that several circle images do not overlap. It is also assumed that all the circle 
diameters are longer than the shortest visible image line segment length LS (if smaller circles exist, they 

will be neglected in these estimations). Similar to the approaches of Feuerverger et al. (2000) and Kim et 
al (2000), the method considers two circle groups, those with centres within the slice and those centred 
outside the slice. 

 

 

 
Fig. 4.2. Section of a transparent matrix 
with opaque circles through which a T 
thick slice perpendicular to the plane P 
is made. 

The largest circle diameter is 
denoted Dmax. The two Dmax / 2 wide 
zones adjacent to the matrix are shown. 
The circles have centres either within 
the slice (circles with full lines) or 
outside (circles with dotted lines). 
When the two Dmax / 2 wide parts are 
removed from the matrix, the image of 
a circle transposed onto a plane PI 
outside the slice (from left to right) has 
a length equal to the circle diameter if 
its centre is within the slice, or smaller 
if it is only partly in the slice. Two 
images corresponding to these two 
cases are shown on the plane PI. 
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Let nT be the number of circles centred within the slice, and Dmax be the largest circle diameter. The 
number of images mT of these nT circles is equal to nT. As the lengths of the images of the circles are 

equal to their diameters, the mean and coefficient of variation of the image lengths are equal to the mean 
Dm and coefficient of variation cvD of the diameter of the circles. 

Consider the two regions of the matrix juxtaposed on each side of the slice of width Dmax / 2 (Fig. 
4.2). The total number of circles nE that have centres in these regions is 

nE = nT Dmax / T .                                                                                                                 (1) 
Obviously, the diameter distribution of the nE circles is the same as that of the nT circles and thus the 

mean diameter is Dm and the coefficient of variation of diameter is cvD. Among these nE circles, only 
those partially in the slice produce images, with image lengths equal to the chord lengths of the circle 
segments visible on the two sides of the slice (Fig. 4.2). On each side of the slice, the number of images 

of circles with centres external to the slice of thickness T is half the number of images produced by a slice 
with thickness nil that would cut a matrix region Dmax large. As the two sides of the slice T yield images, 
the number of images produced by the nE circles is equal to the number of images that the two regions 

would give if they were juxtaposed and sectioned by a slice having a thickness nil. 
If LS is not too great relative to the diameters and if the diameter distribution is approximately or 

perfectly symmetrical, the number of images mE is given by  

mE ≈ nE c1, Dlm Dm / (Dmax + t)                                                                                            (2) 
(See Chapter 1), where c1, Dlm is a coefficient equal to cos[asin(LS / Dlm)] as the slice thickness t is equal to 
0, Dlm – note the difference with Dm – being the diameter of a fictive circle that would give, if it was cut 

by a great number of slices equally spaced by a small distance, images with mean length equal to the 
mean length lmE of the mE images of the nE circles. In this Dlm-diameter circle cut by a slice of thickness 
nil, there exist relations between the ratio LS / lmE, the ratio lS / Dlm, and the ratio lmE / Dlm. The ratio lmE / 

Dlm increases with the ratio LS / lmE. For example, if LS / lmE = 0, lmE / Dlm equals 0.785; if LS / lmE = 1, lmE 
/ Dlm equals 1; if LS = 28 and lmE = 39.76 (values chosen for future reference), LS / lmE equals 0.704 and 
lmE / Dlm equals 0.886. 

The total number of images M is 
M = nT + mE                                                                                                                        (3) 

and the mean length λm of the M images is 

λm = (nT Dm + mE lmE) / (nT + mE).                                                                                     (4) 

From Eqs. (1) and (2), it follows that 
λm ≈ Dm (T + c1, Dlm lmE) / (T + c1, Dlm Dm).                                                                         (5) 

It is easy to show that the coefficient of variation (cvlengths) of the lengths of the M images depend on 

the numbers of images (nT and mE), the means (Dm and lmE), and coefficients of variation (cvlengths, T and 
cvlengths, E) of the image lengths of the two circle subpopulations - in the slice and outside the slice - 

according to the equation 
cvlengths

2 = [nT Dm
2 (cvlengths, T

2 + 1) + mE lmE
2 (cvlengths, E

2+ 1)] / (M  λm
 2) – 1.                    (6) 

In this equation, cvlengths, T
2 is equal to cvD

2. As the diameter distribution is approximately symmetrical 

cvlengths, E
2 is  

cvlengths, E
2 ≈ [3(cvL,Dlm

2 + 1)(cvD
2 + 1) - 2 (cvL,Dlm

2 + 1)] / (cvD
2 + 1)2 - 1                          (7) 

(see Chapter 1). In Eq. (7), cvL,Dlm is the coefficient of variation of the lengths of the images of the Dlm-

diameter circle. In the case of slices of thickness nil, cvL,Dlm decreases as LS / lmE increases (See Chapter 
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1). For example, if LS / lmE = 0, cvL,Dlm equals 0.284; if LS / lmE = 1, cvL,Dlm equals 0; if LS / lmE = 0.704 (as 
previously indicated), cvL,Dlm equals 0.122. 

The previous relations are also valid if the circles are on different planes parallel to P. They are also 
valid for spheres dispersed in the matrix because an image of a sphere cut by a slice is a circle on the 
plane PI with a diameter equal to the length of the image of the equatorial circle of the sphere in a plane P 

given by the slice. Moreover, these relations are valid as well for cylinders dispersed in the matrix and 
perpendicular to the plane P because a cylinder section perpendicular to the cylinder axis is a circle. 
 

3. Proposed methods 
 

Based on these relations, the following methods are proposed to assess the object diameter 

distribution. 
 

3.1. Method for approximately or perfectly normal distributions 

 

The unknown value of lmE is obviously greater than LS but smaller than or equal to λm because the 
lengths of the images of the nT objects are equal to the object diameters, while the lengths of the images 

of the nE objects are smaller than or equal to the object diameters. Therefore, the following calculations 
are repeated with all the values of lmE between λm and LS that differ by a quantity (λm - LS) / w, w being 
sufficiently great for the desired precision.  

Given lmE, the ratio lmE / Dlm is obtained by the iterative calculations given in Appendix A. The ratio 
LS / Dlm and c1, Dlm are calculated according to Eqs. (2) and (4) in Table 4.1. Then, Dm, nT, mE, nE, and 
cvL,Dlm are calculated according to Eqs. (5) to (11) in Table 4.1 (derived from Eqs. (2) to (7)), and Dmax is 

estimated by the greatest image length Lmax. As cvD is greater than or equal to zero, cvD is obtained by 
successive approximations (Appendix B), starting with cvD = 0 and increasing cvD by increments until the 
value of cvlengths, calculated by Eq. (6) with cvlengths, T equal to cvD and with cvlengths, E replaced by its value 

obtained by Eq. (7), is equal to the observed value of cvlengths.  
The value of lmE which yields the smallest difference between the calculated and observed frequencies 

of the images in the largest classes (i.e. those classes containing the largest sized images) is selected. The 

reason for this adjustment is that the diameter of the greatest images is equal to the diameter of the largest 
objects. To calculate the frequency of the largest images, the lower and upper limits of one hundred 
classes (a number chosen for practical reasons) of diameters are calculated, with the cumulative 

frequencies increasing successively by 0.01 between 0 and 1 according to the normal distribution defined 
by Dm and cvD. In each class, the number of images of objects with centres in the slice, which is equal to 
the number of objects in the slice, is nT × 0.01. The number of images of objects with centres outside the 

slice is calculated as follows. The lengths of the simulated images of the circles with diameters equal to 
the class middle obtained by one hundred slices of thickness nil spaced by 0.01× the largest circle 
diameter (equal to the diameter of the largest image) are calculated as previously described (see Chapter 

1). Briefly, for a circle of radius R and a given slice at a distance x from the circle centre, the image length 

is equal to 2 (R2 –x
2)

0.5
 if x < R. If not, no image is obtained. If the image length is shorter than LS, no 

image is considered. The numbers of images that fall in each of one hundred diameter classes are 
calculated as the image frequencies obtained from the hundred circles multiplied by the estimated number 
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(M - nT) of images outside the slice. Finally, for each diameter class, the calculated numbers of images 

given by all the objects (with centres in or outside the slice of thickness T) are added and the frequency of 

the images in each diameter class is calculated. These calculations are detailed in the file “diameters-
thickslices.xls” which is online on the website http://www.diameters-slices.org. 

 

 
Table 4.1. Parameters successively estimated by the method proposed for normal diameter distribution and their 

values obtained for the data set of synaptic vesicles from Feuerverger et al (2000) with LS = 28 nm and adjustment to 

the (three) or four highest frequency classes. 

 
Parameters  Number of Eqs. Estimated values  

(LS / lmE) = LS / lmE 1 0.704 (0.790) 

(lmE / Dlm) = See calculations in Annex A  0.886 (0.913) 

LS / Dlm = (LS / lmE) (lmE / Dlm) 2 0.624 (0.721) 

b = asin(LS / Dlm) 3  

c1, Dlm = cos b 4  

Dm = T λm / [T - c1, Dlm (λm - lmE)] 5 41.63 (43.31) nm 

nT = T M / (T + c1, Dlm Dm ) 6 646 (661) 

mE = M - nT 7 280 (265) 

nE = mE Dmax / (c1, Dlm Dm) 8 574 (588) 

c2, Dlm = 3.1416 - 2 b + sin (2 b) 9  

c3, Dlm = (3 - cos2 b) cos b 10  

cvL, Dlm = (16 c1, Dlm c3, Dlm / (3 c2, Dlm
 2) - 1)0.5 11 0.122 (0.089) 

cvD = See calculations in Annex B  0.145 (0.127) 

 

 

3.2. General method for any distribution 

 

The method is largely based on the approach previously used in the case of thin slices (See Chapter 2). 
It considers the object population to be an assembly of several juxtaposed normal populations. Several (at 
least two) image macro-classes composed of several (at least two) image classes are distinguished. When 

the image length distribution presents several peaks of frequencies, these macro-classes are distinguished 
based on the minimum frequencies in the image length distribution (the higher limit of a macro-class 
being the lower limit of a class composed of greater images with a locally minimal frequency). First, the 

classes with the largest images are grouped in a first composite class named “macro-class 1”. The mean 
and coefficient of variation of the diameters of the objects that produce the images in macro-class 1 are 
estimated from the mean and coefficient of variation of the lengths of these images as previously 

described for a population with a symmetrical diameter distribution, setting the value of LS as equal to the 
lower limit of this macro-class. The general method then considers a smaller macro-class (i.e. composed 
of classes of smaller images). After subtraction of the images given by the objects of macro-class 1, 

calculated assuming that the distribution of diameter is normal, the mean and coefficient of variation of 
the diameters of the objects that produce the remaining images are estimated from the mean and 
coefficient of variation of the lengths of these images, with the value of LS now set to the lower limit of 
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this macro-class. Macro-classes of smaller images are successively considered to estimate the entire 
distribution from the numbers of images remaining in these macro-classes after subtraction of the images 

of the circles that are in the greater image size macro-classes. 
Note that the value of LS of the smallest size macro-class has to be raised if the numbers of images 

remaining in the smaller size classes vary alternately from positive to negative after subtraction of the 

estimated numbers of images produced by the objects in the greater size classes. These variations indicate 
that the random component of the estimated numbers of images in these classes and in the greater classes 
is too high. These calculations are detailed in the previously cited file “diameters-thickslices.xls”. 

 

4. Material and methods used for validation and application of the proposed methods 
 

4.1. Validation of the method for perfectly or approximately symmetrical diameter distributions 

 

Method validity was tested with five virtual populations of one hundred circles with approximately or 

perfectly symmetrical diameter distributions as described previously (See Chapter 1). The numbers (mT 
and mE), mean (λm), and coefficient of variation (cvlengths) of the lengths of the images obtained from one 
hundred T thick slices equally spaced and perpendicular to a plane on which one of the five circle 

populations was included were calculated for different values of T and LS (Table 4.2). Then, from these 
calculated values and from T, LS, and Lmax (equal to the greatest circle diameter), the values of Dm and cvD 
were estimated by the proposed method and compared to the true values.  

 

4.2. Validation of the method for any distribution 

 

Validity was tested with 159 images of a mixed population of 225 euro coins consisting of 38% one-
centime-euro coins 16.19 mm in diameter, 44% two-centimes-euro coins 18.73 mm in diameter, and 18% 
five-centimes-euro coins 21.22 mm in diameter, with cvD values very close to 0. The mean diameter and 

coefficient of variation of the total population were 18.21 mm and 0.100. There were 5 photos, 204 mm × 
297 mm, similar to that shown in Fig. 4.3a, each of 45 coins. The images were obtained by slices 21.72 
mm thick (Fig. 4.3a). The image lengths were different (Fig. 4.3b) from those previously observed with 

slices 5 mm thick (See Chapter 2). The longest and shortest images measured were 21.22 mm and 2.12 
mm. As the image length distribution of the mixed coin population was quite asymmetrical with several 
peaks, the method for any distribution was applied. For that, twenty sub-classes were defined, each 

21.22/20 mm large.  
 

4.3. Application to data of synaptic vesicles from Feuerverger et al. (2000) 

 

These authors estimated the size distribution of synaptic vesicles in nerve terminals from 933 images 
obtained by slices 75 nm thick. From their data, which were expressed as the lengths of the vesicle image 

radii, the length of the smallest image (its diameter) was 23.2 nm, the mean image length (λm) was 40.78 
nm, and the measured longest image (Lmax) was 66.7 nm. By reading their Figure 3 for each image radius 
class (10–12, 12–14, ...  32–34 nm), the numbers of images (1, 6, 77, 177, 208, 188, 151, 92, 25, 5, 2, and  
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Table 4.2. Mean (Dm) and coefficient of variation (cvD) of diameter estimated by the proposed method in five cases 

where the diameter distribution is either perfectly normal (distributions 1 and 2) or perfectly symmetrical 

(distribution 3) or only very roughly symmetrical (distributions 4 and 5) for different slice thicknesses (T) and lower 

image detection limits (LS). 

The greatest diameters were 12.6, 14.9, 14.9, 12.3, and 15.8 units, similar to that of T, LS and Dm, in distributions 

1 to 5, respectively. (in distribution 5, Dm and cvD were also calculated for T equal to 15 as the greatest diameter was 

only slightly greater than 15). Note that T, LS and Dm are expressed in a same unit (i.e. nm, µm …). 

 
  Distributions 

  1 2 3 4 5 

  Dm cvD Dm cvD Dm cvD Dm cvD Dm cvD 
Real values: 10.00 0.099 10.00 0.189 10.01 0.185 10.02 0.171 10.03 0.243 

Estimated values          
T LS           

15 0 10.2 0.073 10.4 0.155 10.4 0.161 10.6 0.081 10.9 0.178 

15 3 10.2 0.080 10.3 0.165 10.3 0.167 10.6 0.099 10.9 0.183 

15 5 10.1 0.085 10.2 0.170 10.2 0.172 10.6 0.101 10.9 0.188 

20 0 10.2 0.075 10.3 0.167 10.2 0.170 10.7 0.019 10.8 0.179 

20 3 10.1 0.086 10.2 0.170 10.2 0.171 10.5 0.103 10.7 0.187 

20 5 10.1 0.089 10.2 0.174 10.1 0.176 10.5 0.105 10.2 0.206 

25 0 10.1 0.079 10.2 0.170 10.2 0.172 10.4 0.100 10.6 0.190 

25 3 10.1 0.085 10.2 0.174 10.1 0.177 10.4 0.105 10.6 0.190 

25 5 10.1 0.090 10.1 0.177 10.1 0.180 10.4 0.108 10.6 0.196 

50 0 10.0 0.091 10.1 0.179 10.1 0.181 10.3 0.111 10.4 0.199 

50 3 10.0 0.093 10.1 0.182 10.0 0.184 10.3 0.111 10.4 0.199 

50 5 10.0 0.095 10.0 0.184 10.0 0.186 10.2 0.147 10.3 0.224 

500 0 10.0 0.099 10.0 0.189 10.0 0.191 10.1 0.117 10.2 0.210 

500 3 10.0 0.100 10.0 0.190 10.0 0.189 10.0 0.165 10.1 0.237 

500 5 10.0 0.100 10.0 0.190 10.0 0.186 10.0 0.169 10.0 0.241 

 
 
1) in each image length class (20–24, 24–28, ... 64–68 nm) were determined. The values λm and cvlengths 
calculated from these data were 40.39 nm and 0.161 (λm was slightly lower than that given by the authors 

– 40.78 nm - presumably because they calculated it directly from the individual images). 
The methods proposed for thick slices could be applied because all the images and thus probably all 

the diameters were smaller than 75 nm. The distribution was first assumed to be approximately normal. 

There were only small numbers of images in the two shortest image classes, one image 23.2 nm long in 
the 20–24 nm class and 6 images in the 24–28 nm class. These accounted for less than 1% of all images, 
so LS was set to 28 nm. The values of λm and cvlengths were re-calculated to exclude these seven small 

images while retaining the value given by the authors as a base (40.78 nm); λm was equal to [(40.78 × 
933) – 23.2 – (6 × 26)] / (933 – 7) = 40.895 nm and cvlengths was equal to 0.159. The calculations were 
repeated with one hundred values of lmE between λm and LS in steps of (λm - LS) / 100. A value of lmE was 

selected that gave the smallest positive difference between the sums of the estimated and observed 
numbers of images in the 56–60, 60–64, and 64–68 nm classes. As there were very few images (8) in 
these three classes, this sample could be suspect and therefore the calculations were also repeated with the 

four largest classes (52–56, 56–60, 60–64, and 64–68 nm).  



Opaque Objects and Transparent Slices Thicker than the Diameters                                                  Chap. 4 
_____________________________________________________________________________________  

- 75 - 

In a second step, the distribution was not assumed to be approximately or perfectly normal and the 
method proposed for any distribution was applied. Five macro-classes (28–36, 36–44, 44–52, 52–60, and 

60–68 nm) were defined, each with two classes 4 nm large. The value of lmE that gave the smallest 
positive difference between the estimated and observed numbers of images in the largest size class of 
each macro-class was selected. 

 

5. Results 
 

5.1 Validation of the method proposed for perfectly or approximately symmetrical distributions 

 

The estimates were very close to the true values when T was much greater than the greatest object 

diameter (Table 4.2). When T was only just greater than the greatest object diameter, the estimates of Dm 
were overestimated, but by less of 4% in the perfectly normal distributions (1 and 2 in Table 4.2) or 
perfectly symmetrical (3) distribution, and by less 9% in distributions 4 and 5 that are only very roughly 

symmetrical (Fisher’s coefficients of asymmetry of -0.77 and 0.61). The estimates of cvD were 
underestimated by up to 53% in distribution 4 and 27% in the others distributions. These deviations were 
slightly lower when LS was higher.  

 

5.2. Validation of the general method for any distribution 

 

Based on the distribution of the image lengths of the coins (Fig. 4.3c), three macro-classes were 
distinguished: 21.22–19.10, 19.10–16.98, and 16.98–10.61 nm, with 2, 2, and 6 sub-classes, respectively. 
The lower limit of the smallest macro-class (10.61–16.98 mm) was set to 10.61 nm because the numbers 

of images remaining in the classes smaller than 10.61 mm alternated from positive to negative after 
subtraction of the numbers of images estimated from circles of larger classes. Therefore, the estimates 
were obtained from 151 greatest images. 

The method identified three sub-populations of coins (Fig. 4.3c) consisting of 44%, 42%, and 14% 
(true values: 38%, 44%, and 18%) with mean diameters of 15.56, 18.74, and 20.77 mm (true values: 
16.19, 18.73, and 21.22 mm) and coefficients of variation of 0.057, 0.001, and 0.001, respectively. The 

mean diameter and coefficient of variation of the total population were 17.65 mm and 0.115 (true values: 
18.21 mm and 0.100). The estimates of nT and mE were 103 and 51, i.e. 33% of the images were from 
coins with centres outside the slices.  

 

5.3. Application to the synaptic vesicle data from Feuerverger et al. (2000) 

 

When the distribution was assumed to be approximately normal and when the calculations were based 
on the image frequencies in the three largest size classes, the estimates of Dm and cvD were 43.31 nm and 
0.127. Table 4.1 details the values successively estimated and the estimates of nT, nE, and mE. The 

frequencies of the smaller images predicted by the normal diameter distribution defined by these values of 
Dm and cvD were lower than the frequencies measured (Fig. 4.4a). On the contrary, the frequencies of the 
larger images were higher. When calculations were based on the four largest size classes (Fig. 4.4b and 

Table 4.1), the estimates of Dm and cvD were 41.63 nm and 0.145. Although the frequencies of the 
smallest images were close to the true values, the frequencies of the smaller images were still 
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underestimated, while the frequencies of the larger images were still overestimated. Similar values of Dm 
and cvD (41.94 nm and 0.144) and the same figure as shown in Fig. 4.4b were obtained when the 

calculation was based on the five largest classes. 
When the method was applied assuming the distribution to be a set of juxtaposed populations with 

normal diameter distributions, Dm and cvD were 41.29 nm and 0.150, and the estimated diameter 

distribution was reassessed (Fig. 4.4c). The numbers nT, nE, and mE were equal to 632, 561 and 284, 
giving 916 images. The image length distribution calculated from the estimated diameter distribution 
corresponded almost exactly to the observed distribution (Fig. 4.4c). The estimated diameter distribution 

had fewer vesicles in the range 38–50 nm than predicted from the normal distribution defined by Dm = 
41.29 nm and cvD = 0.150. 
 

  

 

Fig. 4.3. Applying the proposed 
methods to the estimation of the 
diameter distribution of a mixture of 
one-, two- and five–euro coins (a) 
by thick slices (21.72 mm) 
perpendicular to the piece plane 
which delimit strips (grey surfaces 
21.72 mm × 204 mm) through the 
plane remainder (white surfaces). 

The lengths of the theoretical 
images were measured by Image J 
according to the indications in Fig. 
4.2 (but in some cases where it was 
possible to see that the images of 
two coins overlapped, they were 
assumed not to overlap). The 
distribution of the 159 image lengths 
(thin line with cruces in b) was 
different from that (line) obtained 
previously (see Chapter 2) with 
slices 5 mm thick (only 125 images 
were obtained). Figure c shows the 
distribution of the measured image 
lengths (dotted line with empty 
circles), the estimated coin diameter 
distribution (thick line in the inset) 
and the image length distribution 
calculated from the estimated coin 
diameter distribution (thin line with 
small points). Frequency per class is 
shown by a point or circle at the 
class middle. 
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Fig. 4.4. Applying the proposed methods for estimation of the diameter distribution of synaptic vesicle in the data set 
from Feuerverger et al. (2000) assuming the diameter distribution to be normal (a, b) or asymmetrical (c). The image 
detection limit (LS) is 28 nm. 

The adjustment is based on the three (a) or four (b) highest frequency classes. In case (c), five image macro-
classes were defined. Each figure shows the estimated vesicle diameter distribution (thick line with big points), the 
distribution of the measured vesicle image lengths (dotted line with empty circles), and the distribution of the vesicle 
image lengths calculated from the estimated vesicle diameter distribution (thin line with small points). In (c), the 
curve of the normal distribution calculated with the estimated values of Dm (41.29 nm) and cvD (0.150) is shown 
(dotted line). Frequencies per class are shown by a point or circle at the class middle. The cumulative frequency is 
shown in the smaller insets. The curves of the estimated normal diameter distribution are smooth. 
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6. Discussion and Conclusion 
 

The method proposed for approximately or perfectly normal distributions provided estimates of Dm 
and cvD that were very close to the true values when the slices were very thick relative to the greatest 
diameter. This result is logical as the proportion of the images from circles with centres within the slice 

was high in this case and therefore the image length distribution was very close to the diameter 
distribution. When the slices were just thicker than the largest object diameters, Dm was only slightly 
overestimated while cvD was underestimated, especially in distribution 4 that was only approximately 

symmetrical.  
This method was used for the data set of synaptic vesicles assuming the diameter distribution to be 

sufficiently close to normal for useful estimations. As the smallest and largest classes contain few images 

(with an enhanced probability of sampling error) the estimates obtained with LS equal to 28 nm and the 
four or five highest frequency classes were probably the best. In these cases, the estimated value of Dm 
(41.63 nm) was only slightly lower than the value (42.54 nm) estimated by Feuerverger et al (2000) with 

their "isotonized" method. The comparison between the observed and estimated distributions of the image 
lengths indicated that the observed proportion of images in the range 40 to 50 nm was lower than 
expected from a normal distribution while the observed proportion of the images in the range 30 to 40 nm 

was higher.  
The test conducted with the different euro coins (a three peak distribution) strongly validated the 

method for any distribution, even if the coefficient of variation of diameter of 1 centime of euro coins was 

overestimated. Therefore, the method could be used for the data set of synaptic vesicles without prior 
assumptions regarding the symmetry of the diameter distribution. With this method, the image length 
distribution estimated from the estimated diameter distribution coincided almost exactly with the 

observed distribution. The estimated diameter distribution was thus very likely close to the true 
distribution. There were fewer vesicles in the diameter range 38–50 nm than expected by a normal 
distribution and the estimated value of Dm (41.29 nm) was lower than the estimates (41.7 and 41.63 nm) 

previously obtained by Feuerverger et al (2000) and by Kim et al. (2000). The method also indicated that 
the images were from 632 vesicles with centres within the slice and from 284 vesicles centred outside the 
slice, or about 31% of the images. 

It is expected that this general method should also be applicable to estimate the equivalent diameter 
distribution of slightly distorted circular objects within thick slices using a method in preparation. 
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Scheme for estimating the ratio lmE / Dlm (named hereafter like the variable “lmE_on_Dlm”) from values 
of lmE and LS by successive approximations (the ratio LS / Dlm is named like the variable “LS_on_Dlm”).  

 
For i = 0.001 To 1 Step 0.001 

lmE_on_Dlm = i 

LS on Dlm = (lmE_on_Dlm) LS / lmE 
b = asin (LS_on_Dlm) 
c1, Dlm = cos b 

c2, Dlm = 3.1416 - 2 b + sin (2 b) 
lmE, est = c2, Dlm Dlm / (4 c1, Dlm) 
If lmE, est < lmE Then i = 1 

Next i 
Print lmE_on_Dlm 
 

Appendix B 
 

Scheme for estimating cvD from cvlength, cvL, Dlm, nT, mE, M, Dm (j is here programmed to vary only up 

1000, a value assumed to be sufficiently high in most cases but liable to be changed). 
 
For j = 0.001 To 1000 Step 0.001 

cvD = j 
k1 = cvD

2 + 1 
k2 = cvL, Dlm

2 + 1 

cvlength, E = ((3 k2 k1 - 2 k2) / k1
2 – 1) 0.5 

k3 = cvlength, E
2 + 1 

cvlength, estim = ((nT Dm
2 k1 + mE lmE

2 k3) / (M λm
2) – 1)0.5 

If cvlength, estim
2 > cvlength

2 Then j = 1000 
Next j 
Print cvD 
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CHAPTER 5 

 

Cases of opaque or transparent objects in an opaque matrix 

visible only on section planes 

 

 
In this very short chapter, some points are clarified for the cases of opaque objects and transparent 

objects in an opaque matrix visible only on section planes. 

 
As described in the previous chapters, the images of transparent objects included in a opaque matrix 

(case E) or opaque objects included in a transparent matrix (case F) are obtained by a radiation through 

slices. The image size depends on the smallest (case E) or greatest (case F) dimension of object section in 
the slice thickness which delimits the direct light path through the slice. 

Thus, when opaque objects are in an opaque matrix, no image can be obtained according to these 

models E and F. However, in some cases, planar sections of opaque objects can be distinguished from the 
opaque matrix section on a section plane made through the matrix, for example because the planar object 
sections on the section plane have not the same colour when the section plane is lighted. Such planar 

object sections have same sizes as the object images which would be obtained in cases E and F if the slice 
thickness was equal to zero. Therefore, the methods proposed in the chapters 1, 2 and 3 are applicable to 
these planar object sections. Evidently, a matrix section plane can be a face of slice made through the 

matrix. 
Also according to model E, no image of transparent objects included in an opaque matrix can be 

obtained from section planes made through the matrix (assumed to be very thick) or from slices thicker 

than the greatest object diameter. However, in some cases, it is possible that planar object sections can be 
distinguished from the opaque matrix section on a plane which sections the matrix, for example because 
the planar object sections on the section plane have not the same aspect because of traces made only on 

the matrix by the cutting tool when the objects are gas bubbles. Such planar object sections have same 
sizes as the object images which would be obtained in cases E and F if the slice thickness was equal to 
zero. Therefore, the methods proposed in the chapters 1, 2 and 3 are also applicable to these planar object 

sections. Also, a matrix section plane can be a face of slice made through the matrix, but unlike the 
previous case this slice has to be thicker than the greatest diameter. 

In the case of opaque objects, only the object sections observed on one of the two faces of the slice 

can be considered if the slice is less thick than the suspected greater object size. When the slice is thicker, 
in the two cases of opaque and transparent objects, the object sections can be observed on the two faces, 
but the slice thickness has evidently to be put equal to zero in the various calculations. 

 



 

- 82 - 

 



Conclusion, Limits and Perspectives  
_____________________________________________________________________________________ 

- 83 - 

 
 

CONCLUSIONS, LIMITS AND PERSPECTIVES 
 
 

The new proposed method provides valuable estimations of the number of objects included in a matrix 

and their size distribution from the images obtained by slices made through the matrix when the slice 
thickness is smaller than the smallest diameter, in cases E and F, or greater than the greatest diameter in 
case F (in case E, there is no image) 

Some important precautions have to be considered. In two cases E and F, objects smaller than the 
image detection limit may evidently exist and do not give image. The estimated distribution concerns thus 
only the objects greater than the image detection limit. Moreover, in case E, as objects smaller than the 

slice thickness cannot give images (even if the image detection limit is very small), the estimated 
diameter distribution concerns evidently only the objects greater than the slice thickness. Therefore, the 
slice thickness in case E must be, if possible, smaller than the smaller diameter which has to be 

considered. 
When the slice thickness is suspected to be between the smallest and the greatest diameter, the 

proposed method can however be applied in case F putting the image detection limit equal to the slice 

thickness and neglecting all the images smaller than this limit. Evidently, the estimated distribution will 
be only relative to the objects greater the image detection limit.  

The size of the greatest images provides an underestimated value – depending on the slice thickness in 

case E – of the greatest diameter. This value can be useful to choice the method which has to be used 
(case of slice less thick than the smallest diameter or thicker than the greatest diameter, or intermediate, or 
section plane through the matrix). 

The present results give thus methods useful for many cases. However, a lot of researches need still to 
be made for cases frequently observed in natural or made-up conditions. In particular, the following cases 
should be examined: 

- only approximately circular objects with any equivalent diameter distribution, 
- only approximately spherical objects. It is logical to suspect that the proposed method for only 
approximately circular planar objects, especially valuable for ellipses, are valuable for objects like 

ellipsoids of revolution because any image obtained from a slice which cuts an ellipsoid of revolution 
with axes a and b is an ellipse whose the greatest axis is an image of an ellipse with axes a and b, 
- only approximately circular or spherical objects and thick slices. 

The author hopes to provide in the future some findings about these cases on the website 
http://www.diameters-slices.org. 
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